IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v102y2021ics0305048320306678.html
   My bibliography  Save this article

Two-agent scheduling problems under rejection budget constraints

Author

Listed:
  • Oron, Daniel

Abstract

We study two single machine scheduling problems with two competing agents and the option of rejecting jobs. We seek to minimize the scheduling criterion of one agent under the condition that the maximum completion time of the second agent does not exceed a given upper-bound. Moreover, we assume that jobs are either scheduled or rejected (incurring job-dependent penalties) subject to an upper bound on the total rejection cost. The scheduling objective for the first agent is either the makespan or the total completion time, while that of the second agent is the makespan. As both problems are known to be NP-hard, we develop efficient pseudo-polynomial dynamic programming algorithms to obtain optimal solutions. The algorithms are shown to efficiently solve medium to large size problems through an extensive numerical study.

Suggested Citation

  • Oron, Daniel, 2021. "Two-agent scheduling problems under rejection budget constraints," Omega, Elsevier, vol. 102(C).
  • Handle: RePEc:eee:jomega:v:102:y:2021:i:c:s0305048320306678
    DOI: 10.1016/j.omega.2020.102313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048320306678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2020.102313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alessandro Agnetis & Jean-Charles Billaut & Stanisław Gawiejnowicz & Dario Pacciarelli & Ameur Soukhal, 2014. "Multiagent Scheduling," Springer Books, Springer, edition 127, number 978-3-642-41880-8, June.
    2. Kellerer, Hans & Strusevich, Vitaly, 2013. "Fast approximation schemes for Boolean programming and scheduling problems related to positive convex Half-Product," European Journal of Operational Research, Elsevier, vol. 228(1), pages 24-32.
    3. Dvir Shabtay & Daniel Oron, 2016. "Proportionate flow-shop scheduling with rejection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(5), pages 752-769, May.
    4. Yin, Yunqiang & Cheng, Shuenn-Ren & Cheng, T.C.E. & Wang, Du-Juan & Wu, Chin-Chia, 2016. "Just-in-time scheduling with two competing agents on unrelated parallel machines," Omega, Elsevier, vol. 63(C), pages 41-47.
    5. Alessandro Agnetis & Dario Pacciarelli & Andrea Pacifici, 2007. "Multi-agent single machine scheduling," Annals of Operations Research, Springer, vol. 150(1), pages 3-15, March.
    6. Alessandro Agnetis & Jean-Charles Billaut & Stanisław Gawiejnowicz & Dario Pacciarelli & Ameur Soukhal, 2014. "Multiagent Scheduling Fundamentals," Springer Books, in: Multiagent Scheduling, edition 127, chapter 0, pages 1-22, Springer.
    7. Kejun Zhao & Xiwen Lu, 2016. "Two approximation algorithms for two-agent scheduling on parallel machines to minimize makespan," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 260-278, January.
    8. Wang, Dujuan & Yin, Yunqiang & Cheng, T.C.E., 2018. "Parallel-machine rescheduling with job unavailability and rejection," Omega, Elsevier, vol. 81(C), pages 246-260.
    9. Kejun Zhao & Xiwen Lu & Manzhan Gu, 2016. "A new approximation algorithm for multi-agent scheduling to minimize makespan on two machines," Journal of Scheduling, Springer, vol. 19(1), pages 21-31, February.
    10. Oron, Daniel & Shabtay, Dvir & Steiner, George, 2015. "Single machine scheduling with two competing agents and equal job processing times," European Journal of Operational Research, Elsevier, vol. 244(1), pages 86-99.
    11. Hermelin, Danny & Kubitza, Judith-Madeleine & Shabtay, Dvir & Talmon, Nimrod & Woeginger, Gerhard J., 2019. "Scheduling two agents on a single machine: A parameterized analysis of NP-hard problems," Omega, Elsevier, vol. 83(C), pages 275-286.
    12. E. L. Lawler, 1973. "Optimal Sequencing of a Single Machine Subject to Precedence Constraints," Management Science, INFORMS, vol. 19(5), pages 544-546, January.
    13. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    14. Baruch Mor & Gur Mosheiov, 2016. "Minimizing maximum cost on a single machine with two competing agents and job rejection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1524-1531, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhe & Gong, Xue & Song, Xiaoling & Yin, Yong & Lev, Benjamin & Chen, Jie, 2022. "A column generation-based exact solution method for seru scheduling problems," Omega, Elsevier, vol. 108(C).
    2. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    3. Baruch Mor, 2023. "Single machine scheduling problems involving job-dependent step-deterioration dates and job rejection," Operational Research, Springer, vol. 23(1), pages 1-19, March.
    4. Lingfa Lu & Liqi Zhang, 2023. "Scheduling problems with rejection to minimize the k-th power of the makespan plus the total rejection cost," Journal of Combinatorial Optimization, Springer, vol. 46(1), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang Xingong & Wang Yong, 2017. "Two-agent scheduling problems on a single-machine to minimize the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 945-955, April.
    2. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    3. Manzhan Gu & Jinwei Gu & Xiwen Lu, 2018. "An algorithm for multi-agent scheduling to minimize the makespan on m parallel machines," Journal of Scheduling, Springer, vol. 21(5), pages 483-492, October.
    4. Qi Feng & Shisheng Li, 2022. "Algorithms for Multi-Customer Scheduling with Outsourcing," Mathematics, MDPI, vol. 10(9), pages 1-12, May.
    5. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    6. Byung-Cheon Choi & Myoung-Ju Park, 2016. "An Ordered Flow Shop with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-24, October.
    7. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    8. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    9. Enrique Gerstl & Baruch Mor & Gur Mosheiov, 2017. "Scheduling with two competing agents to minimize total weighted earliness," Annals of Operations Research, Springer, vol. 253(1), pages 227-245, June.
    10. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    11. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    12. Baruch Mor & Gur Mosheiov, 2017. "A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1454-1468, May.
    13. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.
    14. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    15. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    16. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    17. Hermelin, Danny & Kubitza, Judith-Madeleine & Shabtay, Dvir & Talmon, Nimrod & Woeginger, Gerhard J., 2019. "Scheduling two agents on a single machine: A parameterized analysis of NP-hard problems," Omega, Elsevier, vol. 83(C), pages 275-286.
    18. Cheng, Shuenn-Ren, 2014. "Some new problems on two-agent scheduling to minimize the earliness costs," International Journal of Production Economics, Elsevier, vol. 156(C), pages 24-30.
    19. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.
    20. Byung-Cheon Choi & Myoung-Ju Park, 2020. "Scheduling two projects with controllable processing times in a single-machine environment," Journal of Scheduling, Springer, vol. 23(5), pages 619-628, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:102:y:2021:i:c:s0305048320306678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.