IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v46y2010i1p120-135.html
   My bibliography  Save this article

Optimizing the block size in container yards

Author

Listed:
  • Lee, Byung Kwon
  • Kim, Kap Hwan

Abstract

A block is the basic unit of storage space in container terminals. This study proposes two methods for optimizing the block size, by considering the throughput requirements of yard cranes (YCs) and the block storage requirements. To estimate the YC performance, cycle-time models of various handling operations of YCs are analytically derived. Two types of container yards are examined: those with blocks that are laid out parallel to the quay and those laid out vertical to the quay.

Suggested Citation

  • Lee, Byung Kwon & Kim, Kap Hwan, 2010. "Optimizing the block size in container yards," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 120-135, January.
  • Handle: RePEc:eee:transe:v:46:y:2010:i:1:p:120-135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655450900088X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan P. Cavada & Cristián E. Cortés & Pablo A. Rey, 2023. "Comparing allocation and relocation policies at a logistics service container terminal: a discrete-event simulation approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1281-1316, December.
    2. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    3. Nima Zaerpour & Amir Gharehgozli & René De Koster, 2019. "Vertical Expansion: A Solution for Future Container Terminals," Transportation Science, INFORMS, vol. 53(5), pages 1235-1251, September.
    4. Nourinejad, Mehdi & Roorda, Matthew J., 2014. "A dynamic carsharing decision support system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 36-50.
    5. Roy, D. & Gupta, A. & Parhi, S. & de Koster, M.B.M., 2014. "Optimal Stack Layout in a Sea Container Terminal with Automated Lifting Vehicles," ERIM Report Series Research in Management ERS-2014-012-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    7. Martin Alcalde, Enrique & Kim, Kap Hwan & Marchán, Sergi Saurí, 2015. "Optimal space for storage yard considering yard inventory forecasts and terminal performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 101-128.
    8. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    9. Darayi, Mohamad & Barker, Kash & Nicholson, Charles D., 2019. "A multi-industry economic impact perspective on adaptive capacity planning in a freight transportation network," International Journal of Production Economics, Elsevier, vol. 208(C), pages 356-368.
    10. Zhang, Xiaoju & Zeng, Qingcheng & Yang, Zhongzhen, 2016. "Modeling the mixed storage strategy for quay crane double cycling in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 171-187.
    11. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Vidal-Holguín, Carlos Julio, 2022. "A rail-road transshipment yard picture," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    12. Nanxi Wang & Daofang Chang & Xiaowei Shi & Jun Yuan & Yinping Gao, 2019. "Analysis and Design of Typical Automated Container Terminals Layout Considering Carbon Emissions," Sustainability, MDPI, vol. 11(10), pages 1-40, May.
    13. Akash Gupta & Debjit Roy & René de Koster & Sampanna Parhi, 2017. "Optimal stack layout in a sea container terminal with automated lifting vehicles," International Journal of Production Research, Taylor & Francis Journals, vol. 55(13), pages 3747-3765, July.
    14. Lee, Byung Kwon & Kim, Kap Hwan, 2010. "Comparison and evaluation of various cycle-time models for yard cranes in container terminals," International Journal of Production Economics, Elsevier, vol. 126(2), pages 350-360, August.
    15. Mladen Krstić & Snežana Tadić & Valerio Elia & Stefania Massari & Muhammad Umar Farooq, 2023. "Intermodal Terminal Subsystem Technology Selection Using Integrated Fuzzy MCDM Model," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    16. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    17. Saurí, S. & Martín, E., 2011. "Space allocating strategies for improving import yard performance at marine terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1038-1057.
    18. Jang, Dong-Won & Kim, Se Won & Kim, Kap Hwan, 2013. "The optimization of mixed block stacking requiring relocations," International Journal of Production Economics, Elsevier, vol. 143(2), pages 256-262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:46:y:2010:i:1:p:120-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.