IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v46y2012i1p134-148.html
   My bibliography  Save this article

Dynamic Space and Time Partitioning for Yard Crane Workload Management in Container Terminals

Author

Listed:
  • Xi Guo

    (School of Computer Engineering, Nanyang Technological University, Singapore 639798)

  • Shell Ying Huang

    (School of Computer Engineering, Nanyang Technological University, Singapore 639798)

Abstract

We propose a new hierarchical scheme for yard crane (YC) workload management in container terminals. We also propose a time partitioning algorithm and a space partitioning algorithm for deploying YCs to handle changing job arrival patterns in a row of yard blocks. The main differences between our approach and most of the methods in literature are (1) the average vehicle job waiting time instead of the number of jobs is used to balance YC workload and to evaluate the quality of a partition, (2) the YC working zone assignment is not in units of yard blocks and our space partitioning algorithm generates more flexible divisions of the workload from all blocks, and (3) the YC deployment frequency is not fixed but is decided by our time partitioning algorithm with the objective of minimizing average vehicle waiting times. The scheme combines simulation and optimization to achieve our objective for a row of yard blocks. Experimental results show that the proposed binary partitioning algorithm TP2 makes substantial improvements in job waiting times over the basic partitioning scheme and another existing algorithm (Ng, W. C. 2005. Crane scheduling in container yards with intercrane interference. Eur. J. Oper. Res. 164 (1) 64--78) in all tested job arrival scenarios.

Suggested Citation

  • Xi Guo & Shell Ying Huang, 2012. "Dynamic Space and Time Partitioning for Yard Crane Workload Management in Container Terminals," Transportation Science, INFORMS, vol. 46(1), pages 134-148, February.
  • Handle: RePEc:inm:ortrsc:v:46:y:2012:i:1:p:134-148
    DOI: 10.1287/trsc.1110.0383
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1110.0383
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1110.0383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cao, Zhi & Lee, Der-Horng & Meng, Qiang, 2008. "Deployment strategies of double-rail-mounted gantry crane systems for loading outbound containers in container terminals," International Journal of Production Economics, Elsevier, vol. 115(1), pages 221-228, September.
    2. Kap Hwan Kim & Ki Young Kim, 1999. "An Optimal Routing Algorithm for a Transfer Crane in Port Container Terminals," Transportation Science, INFORMS, vol. 33(1), pages 17-33, February.
    3. Raymond K. Cheung & Chung-Lun Li & Wuqin Lin, 2002. "Interblock Crane Deployment in Container Terminals," Transportation Science, INFORMS, vol. 36(1), pages 79-93, February.
    4. Lau, Henry Y.K. & Zhao, Ying, 2008. "Integrated scheduling of handling equipment at automated container terminals," International Journal of Production Economics, Elsevier, vol. 112(2), pages 665-682, April.
    5. Ng, W. C., 2005. "Crane scheduling in container yards with inter-crane interference," European Journal of Operational Research, Elsevier, vol. 164(1), pages 64-78, July.
    6. Lee, Der-Horng & Cao, Zhi & Meng, Qiang, 2007. "Scheduling of two-transtainer systems for loading outbound containers in port container terminals with simulated annealing algorithm," International Journal of Production Economics, Elsevier, vol. 107(1), pages 115-124, May.
    7. Chen, Lu & Bostel, Nathalie & Dejax, Pierre & Cai, Jianguo & Xi, Lifeng, 2007. "A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal," European Journal of Operational Research, Elsevier, vol. 181(1), pages 40-58, August.
    8. Henry Lau & Ying Zhao, 2008. "Integrated scheduling of handling equipment at automated container terminals," Annals of Operations Research, Springer, vol. 159(1), pages 373-394, March.
    9. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    10. Ananthapadmanabhan Narasimhan & Udatta S. Palekar, 2002. "Analysis and Algorithms for the Transtainer Routing Problem in Container Port Operations," Transportation Science, INFORMS, vol. 36(1), pages 63-78, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    2. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    3. Buddhi A. Weerasinghe & H. Niles Perera & Xiwen Bai, 2024. "Optimizing container terminal operations: a systematic review of operations research applications," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(2), pages 307-341, June.
    4. Shell Ying Huang & Ya Li, 2017. "Yard crane scheduling to minimize total weighted vessel loading time in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 689-720, December.
    5. Wiercx, Max & van Kalmthout, Martijn & Wiegmans, Bart, 2019. "Inland waterway terminal yard configuration contributing to sustainability: Modeling yard operations," Research in Transportation Economics, Elsevier, vol. 73(C), pages 4-16.
    6. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    7. Chenhao Zhou & Qitong Zhao & Haobin Li, 2021. "Simulation optimization iteration approach on traffic integrated yard allocation problem in transshipment terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 663-688, September.
    8. Miguel Hervás-Peralta & Sara Poveda-Reyes & Gemma Dolores Molero & Francisco Enrique Santarremigia & Juan-Pascual Pastor-Ferrando, 2019. "Improving the Performance of Dry and Maritime Ports by Increasing Knowledge about the Most Relevant Functionalities of the Terminal Operating System (TOS)," Sustainability, MDPI, vol. 11(6), pages 1-23, March.
    9. Yu, Dayong & Li, Dong & Sha, Mei & Zhang, Dali, 2019. "Carbon-efficient deployment of electric rubber-tyred gantry cranes in container terminals with workload uncertainty," European Journal of Operational Research, Elsevier, vol. 275(2), pages 552-569.
    10. Yong Wu & Wenkai Li & Matthew E. H. Petering & Mark Goh & Robert de Souza, 2015. "Scheduling Multiple Yard Cranes with Crane Interference and Safety Distance Requirement," Transportation Science, INFORMS, vol. 49(4), pages 990-1005, November.
    11. Roy, Debjit & de Koster, René, 2018. "Stochastic modeling of unloading and loading operations at a container terminal using automated lifting vehicles," European Journal of Operational Research, Elsevier, vol. 266(3), pages 895-910.
    12. Schwientek, Anne Kathrina & Lange, Ann-Kathrin & Holzner, Markus & Thomsen, Margit & Jahn, Carlos, 2018. "Integrating layout planning and simulation for logistic nodes," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Logistics 4.0 and Sustainable Supply Chain Management: Innovative Solutions for Logistics and Sustainable Supply Chain Management in the Context of In, volume 26, pages 21-39, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shell Ying Huang & Ya Li, 2017. "Yard crane scheduling to minimize total weighted vessel loading time in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 689-720, December.
    2. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
    3. Anne Ehleiter & Florian Jaehn, 2018. "Scheduling crossover cranes at container terminals during seaside peak times," Journal of Heuristics, Springer, vol. 24(6), pages 899-932, December.
    4. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    6. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    7. Leonard Heilig & Stefan Voß, 2017. "Inter-terminal transportation: an annotated bibliography and research agenda," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 35-63, March.
    8. Yong Wu & Wenkai Li & Matthew E. H. Petering & Mark Goh & Robert de Souza, 2015. "Scheduling Multiple Yard Cranes with Crane Interference and Safety Distance Requirement," Transportation Science, INFORMS, vol. 49(4), pages 990-1005, November.
    9. Li, Wenkai & Wu, Yong & Petering, M.E.H. & Goh, Mark & Souza, Robert de, 2009. "Discrete time model and algorithms for container yard crane scheduling," European Journal of Operational Research, Elsevier, vol. 198(1), pages 165-172, October.
    10. Di Luan & Mingjing Zhao & Qianru Zhao & Nan Wang, 2021. "Modelling of integrated scheduling problem of capacitated equipment systems with a multi-lane road network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-38, June.
    11. Jiang, Xin Jia & Jin, Jian Gang, 2017. "A branch-and-price method for integrated yard crane deployment and container allocation in transshipment yards," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 62-75.
    12. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    13. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    14. Xiao-Ming Yang & Xin-Jia Jiang, 2020. "Yard Crane Scheduling in the Ground Trolley-Based Automated Container Terminal," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(02), pages 1-28, March.
    15. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    16. Zeng, Qingcheng & Yang, Zhongzhen & Lai, Luyuan, 2009. "Models and algorithms for multi-crane oriented scheduling method in container terminals," Transport Policy, Elsevier, vol. 16(5), pages 271-278, September.
    17. Dirk Briskorn & Florian Jaehn & Andreas Wiehl, 2019. "A generator for test instances of scheduling problems concerning cranes in transshipment terminals," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 45-69, March.
    18. Ulf Speer & Kathrin Fischer, 2017. "Scheduling of Different Automated Yard Crane Systems at Container Terminals," Transportation Science, INFORMS, vol. 51(1), pages 305-324, February.
    19. Fotuhi, Fateme & Huynh, Nathan & Vidal, Jose M. & Xie, Yuanchang, 2013. "Modeling yard crane operators as reinforcement learning agents," Research in Transportation Economics, Elsevier, vol. 42(1), pages 3-12.
    20. Ehleiter, Anne & Jaehn, Florian, 2016. "Housekeeping: Foresightful container repositioning," International Journal of Production Economics, Elsevier, vol. 179(C), pages 203-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:46:y:2012:i:1:p:134-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.