IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v45y2009i5p771-786.html
   My bibliography  Save this article

Container storage and transshipment marine terminals

Author

Listed:
  • Nishimura, Etsuko
  • Imai, Akio
  • Janssens, Gerrit K.
  • Papadimitriou, Stratos

Abstract

This study addresses the storage arrangement of transshipment containers on a container yard, in order to carry out efficiently the ship handling operations at a terminal where mega-containerships call. An optimization model is specified to investigate the flow of containers from the mega-containership to feeder ships using intermediate storage at the yard. A heuristic based on the lagrangian relaxation is formulated. The quality of the heuristic approach is tested in a number of experiments. In the experiments, various situations are analyzed with respect to mega-containership arrival rates, some strategies for stack arrangements and terminal layouts.

Suggested Citation

  • Nishimura, Etsuko & Imai, Akio & Janssens, Gerrit K. & Papadimitriou, Stratos, 2009. "Container storage and transshipment marine terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 771-786, September.
  • Handle: RePEc:eee:transe:v:45:y:2009:i:5:p:771-786
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554509000337
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    2. Qingcheng Zeng & Yuanjun Feng & Zigen Chen, 2017. "Optimizing berth allocation and storage space in direct transshipment operations at container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(3), pages 474-503, August.
    3. Luo, Jiabin & Wu, Yue, 2015. "Modelling of dual-cycle strategy for container storage and vehicle scheduling problems at automated container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 49-64.
    4. Zhen, Lu, 2014. "Container yard template planning under uncertain maritime market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 199-217.
    5. Nellen, Nicole & Lange, Ann-Kathrin & Jahn, Carlos, 2022. "Potentials of direct container transshipment at container terminals," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 679-705, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    6. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    7. Snežana Tadić & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2019. "Planning an Intermodal Terminal for the Sustainable Transport Networks," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    8. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    9. Zhen, Lu & Xu, Zhou & Wang, Kai & Ding, Yi, 2016. "Multi-period yard template planning in container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 700-719.
    10. Zhang, Di & Chen, Feng & Mei, Ziqiao, 2023. "Optimization on joint scheduling of yard allocation and transfer manpower assignment for automobile RO-RO terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    11. Dawn Russell & Kusumal Ruamsook & Violeta Roso, 2022. "Managing supply chain uncertainty by building flexibility in container port capacity: a logistics triad perspective and the COVID-19 case," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(1), pages 92-113, March.
    12. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    13. Xiaojun Li & Ran Zhou & Lequn Zhu, 2024. "Research on Energy Saving Effect of Parallel and Perpendicular Yard Layouts under Different Proportions of Transshipment at the Automated Container Terminal," Sustainability, MDPI, vol. 16(17), pages 1-19, August.
    14. Zhen, Lu, 2016. "Modeling of yard congestion and optimization of yard template in container ports," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 83-104.
    15. Chen, Xiaojing & Li, Feng & Jia, Bin & Wu, Jianjun & Gao, Ziyou & Liu, Ronghui, 2021. "Optimizing storage location assignment in an automotive Ro-Ro terminal," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 249-281.
    16. Voß, Andre & Guckenbiehl, Gabriel & Schütt, Holger & Buer, Tobias, 2016. "A storage strategy with dynamic bay reservations for container terminals," Bremen Computational Logistics Group Working Papers 4, University of Bremen, Computational Logistics Junior Research Group.
    17. Chenhao Zhou & Ek Peng Chew & Loo Hay Lee, 2018. "Information-Based Allocation Strategy for GRID-Based Transshipment Automated Container Terminal," Transportation Science, INFORMS, vol. 52(3), pages 707-721, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:45:y:2009:i:5:p:771-786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.