IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v134y2001i1p165-178.html
   My bibliography  Save this article

A genetic algorithm approach to the product line design problem using the seller's return criterion: An extensive comparative computational study

Author

Listed:
  • Alexouda, Georgia
  • Paparrizos, Konstantinos

Abstract

No abstract is available for this item.

Suggested Citation

  • Alexouda, Georgia & Paparrizos, Konstantinos, 2001. "A genetic algorithm approach to the product line design problem using the seller's return criterion: An extensive comparative computational study," European Journal of Operational Research, Elsevier, vol. 134(1), pages 165-178, October.
  • Handle: RePEc:eee:ejores:v:134:y:2001:i:1:p:165-178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(00)00246-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suresh K. Nair & Lakshman S. Thakur & Kuang-Wei Wen, 1995. "Near Optimal Solutions for Product Line Design and Selection: Beam Search Heuristics," Management Science, INFORMS, vol. 41(5), pages 767-785, May.
    2. Atidel Ben Hadj-Alouane & James C. Bean, 1997. "A Genetic Algorithm for the Multiple-Choice Integer Program," Operations Research, INFORMS, vol. 45(1), pages 92-101, February.
    3. Green, Paul E & Srinivasan, V, 1978. "Conjoint Analysis in Consumer Research: Issues and Outlook," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 5(2), pages 103-123, Se.
    4. Gregory Dobson & Shlomo Kalish, 1988. "Positioning and Pricing a Product Line," Marketing Science, INFORMS, vol. 7(2), pages 107-125.
    5. Green, Paul E. & Krieger, Abba M., 1989. "Recent contributions to optimal product positioning and buyer segmentation," European Journal of Operational Research, Elsevier, vol. 41(2), pages 127-141, July.
    6. Matsatsinis, Nikolaos F. & Siskos, Yannis, 1999. "MARKEX: An intelligent decision support system for product development decisions," European Journal of Operational Research, Elsevier, vol. 113(2), pages 336-354, March.
    7. Green, Paul E. & Krieger, Abba M., 1992. "Modeling competitive pricing and market share: Anatomy of a decision support system," European Journal of Operational Research, Elsevier, vol. 60(1), pages 31-44, July.
    8. P. V. (Sundar) Balakrishnan & Varghese S. Jacob, 1996. "Genetic Algorithms for Product Design," Management Science, INFORMS, vol. 42(8), pages 1105-1117, August.
    9. Jakobs, Stefan, 1996. "On genetic algorithms for the packing of polygons," European Journal of Operational Research, Elsevier, vol. 88(1), pages 165-181, January.
    10. Rajeev Kohli & R. Sukumar, 1990. "Heuristics for Product-Line Design Using Conjoint Analysis," Management Science, INFORMS, vol. 36(12), pages 1464-1478, December.
    11. Kohli, Rajeev & Krishnamurti, Ramesh, 1989. "Optimal product design using conjoint analysis: Computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 40(2), pages 186-195, May.
    12. Paul E. Green & Abba M. Krieger, 1985. "Models and Heuristics for Product Line Selection," Marketing Science, INFORMS, vol. 4(1), pages 1-19.
    13. Chatterjee, Sangit & Carrera, Cecilia & Lynch, Lucy A., 1996. "Genetic algorithms and traveling salesman problems," European Journal of Operational Research, Elsevier, vol. 93(3), pages 490-510, September.
    14. Beasley, J. E. & Chu, P. C., 1996. "A genetic algorithm for the set covering problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 392-404, October.
    15. Richard D. McBride & Fred S. Zufryden, 1988. "An Integer Programming Approach to the Optimal Product Line Selection Problem," Marketing Science, INFORMS, vol. 7(2), pages 126-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albritton, M. David & McMullen, Patrick R., 2007. "Optimal product design using a colony of virtual ants," European Journal of Operational Research, Elsevier, vol. 176(1), pages 498-520, January.
    2. Sabuncuoglu, Ihsan & Gocgun, Yasin & Erel, Erdal, 2008. "Backtracking and exchange of information: Methods to enhance a beam search algorithm for assembly line scheduling," European Journal of Operational Research, Elsevier, vol. 186(3), pages 915-930, May.
    3. Tsafarakis, Stelios & Marinakis, Yannis & Matsatsinis, Nikolaos, 2011. "Particle swarm optimization for optimal product line design," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 13-22.
    4. Juan Carlos Leyva López & Jesús Jaime Solano Noriega & Omar Ahumada Valenzuela & Alma Montserrat Romero Serrano, 2022. "A preference choice model for the new product design problem," Operational Research, Springer, vol. 22(4), pages 1-32, September.
    5. Stelios Tsafarakis, 2016. "Redesigning product lines in a period of economic crisis: a hybrid simulated annealing algorithm with crossover," Annals of Operations Research, Springer, vol. 247(2), pages 617-633, December.
    6. Lacourbe, Paul, 2012. "A model of product line design and introduction sequence with reservation utility," European Journal of Operational Research, Elsevier, vol. 220(2), pages 338-348.
    7. G. E. Fruchter & A. Fligler & R. S. Winer, 2006. "Optimal Product Line Design: Genetic Algorithm Approach to Mitigate Cannibalization," Journal of Optimization Theory and Applications, Springer, vol. 131(2), pages 227-244, November.
    8. Pantourakis, Michail & Tsafarakis, Stelios & Zervoudakis, Konstantinos & Altsitsiadis, Efthymios & Andronikidis, Andreas & Ntamadaki, Vasiliki, 2022. "Clonal selection algorithms for optimal product line design: A comparative study," European Journal of Operational Research, Elsevier, vol. 298(2), pages 585-595.
    9. Alexandre Belloni & Robert Freund & Matthew Selove & Duncan Simester, 2008. "Optimizing Product Line Designs: Efficient Methods and Comparisons," Management Science, INFORMS, vol. 54(9), pages 1544-1552, September.
    10. Tsafarakis, Stelios & Zervoudakis, Konstantinos & Andronikidis, Andreas & Altsitsiadis, Efthymios, 2020. "Fuzzy self-tuning differential evolution for optimal product line design," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1161-1169.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albritton, M. David & McMullen, Patrick R., 2007. "Optimal product design using a colony of virtual ants," European Journal of Operational Research, Elsevier, vol. 176(1), pages 498-520, January.
    2. Winfried Steiner & Harald Hruschka, 2002. "A Probabilistic One-Step Approach to the Optimal Product Line Design Problem Using Conjoint and Cost Data," Review of Marketing Science Working Papers 1-4-1003, Berkeley Electronic Press.
    3. Winfried J. Steiner & Harald Hruschka, 2002. "Produktliniengestaltung mit Genetischen Algorithmen," Schmalenbach Journal of Business Research, Springer, vol. 54(7), pages 575-601, November.
    4. G. E. Fruchter & A. Fligler & R. S. Winer, 2006. "Optimal Product Line Design: Genetic Algorithm Approach to Mitigate Cannibalization," Journal of Optimization Theory and Applications, Springer, vol. 131(2), pages 227-244, November.
    5. Alexandre Belloni & Robert Freund & Matthew Selove & Duncan Simester, 2008. "Optimizing Product Line Designs: Efficient Methods and Comparisons," Management Science, INFORMS, vol. 54(9), pages 1544-1552, September.
    6. Xinfang (Jocelyn) Wang & Jeffrey D. Camm & David J. Curry, 2009. "A Branch-and-Price Approach to the Share-of-Choice Product Line Design Problem," Management Science, INFORMS, vol. 55(10), pages 1718-1728, October.
    7. Tan Wang & Genaro Gutierrez, 2022. "Robust Product Line Design by Protecting the Downside While Minding the Upside," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 194-217, January.
    8. Baier, Daniel & Gaul, Wolfgang, 1998. "Optimal product positioning based on paired comparison data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 365-392, November.
    9. Leyuan Shi & Sigurdur Ólafsson & Qun Chen, 2001. "An Optimization Framework for Product Design," Management Science, INFORMS, vol. 47(12), pages 1681-1692, December.
    10. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    11. Nair, Suresh K. & Tarasewich, Peter, 2003. "A model and solution method for multi-period sales promotion design," European Journal of Operational Research, Elsevier, vol. 150(3), pages 672-687, November.
    12. Schön, Cornelia, 2010. "On the product line selection problem under attraction choice models of consumer behavior," European Journal of Operational Research, Elsevier, vol. 206(1), pages 260-264, October.
    13. Day, Jamison M. & Venkataramanan, M.A., 2006. "Profitability in product line pricing and composition with manufacturing commonalities," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1782-1797, December.
    14. Dimitris Bertsimas & Velibor V. Mišić, 2019. "Exact First-Choice Product Line Optimization," Operations Research, INFORMS, vol. 67(3), pages 651-670, May.
    15. Jeffrey D. Camm & James J. Cochran & David J. Curry & Sriram Kannan, 2006. "Conjoint Optimization: An Exact Branch-and-Bound Algorithm for the Share-of-Choice Problem," Management Science, INFORMS, vol. 52(3), pages 435-447, March.
    16. Lacourbe, Paul, 2012. "A model of product line design and introduction sequence with reservation utility," European Journal of Operational Research, Elsevier, vol. 220(2), pages 338-348.
    17. Tallys H. Yunes & Dominic Napolitano & Alan Scheller-Wolf & Sridhar Tayur, 2007. "Building Efficient Product Portfolios at John Deere and Company," Operations Research, INFORMS, vol. 55(4), pages 615-629, August.
    18. Wilhelm, Wilbert E. & Xu, Kaihong, 2002. "Prescribing product upgrades, prices and production levels over time in a stochastic environment," European Journal of Operational Research, Elsevier, vol. 138(3), pages 601-621, May.
    19. Tarasewich, Peter & McMullen, Patrick R., 2001. "A pruning heuristic for use with multisource product design," European Journal of Operational Research, Elsevier, vol. 128(1), pages 58-73, January.
    20. Evan Rash & Karl Kempf, 2012. "Product Line Design and Scheduling at Intel," Interfaces, INFORMS, vol. 42(5), pages 425-436, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:134:y:2001:i:1:p:165-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.