IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i4d10.1007_s12351-021-00666-x.html
   My bibliography  Save this article

A preference choice model for the new product design problem

Author

Listed:
  • Juan Carlos Leyva López

    (Blvd. Lola Beltrán y Blvd. Rolando Arjona)

  • Jesús Jaime Solano Noriega

    (Blvd. Lola Beltrán y Blvd. Rolando Arjona)

  • Omar Ahumada Valenzuela

    (Blvd. Lola Beltrán y Blvd. Rolando Arjona)

  • Alma Montserrat Romero Serrano

    (Blvd. Lola Beltrán y Blvd. Rolando Arjona)

Abstract

The design of new products is a matter of great importance that can directly affect profitability and competitiveness in modern companies. For this reason, the selection of a final product design needs to consider at least four factors of importance: anticipated market demand for the product design, preference heterogeneity among consumers, decision-maker preferences, and fuzzy preference information in the design criteria. This paper proposes a frequency-based preference choice model that considers all the above factors and can be used with algorithms that solve the optimal product design problem using the share of preference frequency criterion. The choice model introduced in this paper is based on the multicriteria outranking approach, and its predictive accuracy is optimized with genetic algorithms. The proposed genetic algorithm is compared with Interior Point OPTimizer, a software package for large-scale non-linear optimization. The experiment results demonstrate that the proposed method achieves near-optimal solutions in reasonable computational time and significantly outperforms the runtime compared algorithm.

Suggested Citation

  • Juan Carlos Leyva López & Jesús Jaime Solano Noriega & Omar Ahumada Valenzuela & Alma Montserrat Romero Serrano, 2022. "A preference choice model for the new product design problem," Operational Research, Springer, vol. 22(4), pages 1-32, September.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:4:d:10.1007_s12351-021-00666-x
    DOI: 10.1007/s12351-021-00666-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-021-00666-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-021-00666-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S Tsafarakis & E Grigoroudis & N Matsatsinis, 2011. "Consumer choice behaviour and new product development: an integrated market simulation approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1253-1267, July.
    2. Manrai, Ajay K., 1995. "Mathematical models of brand choice behavior," European Journal of Operational Research, Elsevier, vol. 82(1), pages 1-17, April.
    3. Fernandez, Eduardo & Leyva, Juan Carlos, 2004. "A method based on multiobjective optimization for deriving a ranking from a fuzzy preference relation," European Journal of Operational Research, Elsevier, vol. 154(1), pages 110-124, April.
    4. Kohli, Rajeev & Krishnamurti, Ramesh, 1989. "Optimal product design using conjoint analysis: Computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 40(2), pages 186-195, May.
    5. Baltas, George & Doyle, Peter, 2001. "Random utility models in marketing research: a survey," Journal of Business Research, Elsevier, vol. 51(2), pages 115-125, February.
    6. Laurent Alfandari & Victoire Denoyel & Aurélie Thiele, 2020. "Solving utility-maximization selection problems with Multinomial Logit demand: Is the First-Choice model a good approximation?," Annals of Operations Research, Springer, vol. 292(1), pages 553-573, September.
    7. Alexouda, Georgia & Paparrizos, Konstantinos, 2001. "A genetic algorithm approach to the product line design problem using the seller's return criterion: An extensive comparative computational study," European Journal of Operational Research, Elsevier, vol. 134(1), pages 165-178, October.
    8. Edgar Pessemier & Philip Burger & Richard Teach & Douglas Tigert, 1971. "Using Laboratory Brand Preference Scales to Predict Consumer Brand Purchases," Management Science, INFORMS, vol. 17(6), pages 371-385, February.
    9. Keeney,Ralph L. & Raiffa,Howard, 1993. "Decisions with Multiple Objectives," Cambridge Books, Cambridge University Press, number 9780521438834, September.
    10. Matsatsinis, Nikolaos F. & Siskos, Yannis, 1999. "MARKEX: An intelligent decision support system for product development decisions," European Journal of Operational Research, Elsevier, vol. 113(2), pages 336-354, March.
    11. Miettinen, Kaisa & Salminen, Pekka, 1999. "Decision-aid for discrete multiple criteria decision making problems with imprecise data," European Journal of Operational Research, Elsevier, vol. 119(1), pages 50-60, November.
    12. Krieger, Abba M. & Green, P. E., 2002. "A decision support model for selecting product/service benefit positionings," European Journal of Operational Research, Elsevier, vol. 142(1), pages 187-202, October.
    13. Greg Allenby & Geraldine Fennell & Joel Huber & Thomas Eagle & Tim Gilbride & Dan Horsky & Jaehwan Kim & Peter Lenk & Rich Johnson & Elie Ofek & Bryan Orme & Thomas Otter & Joan Walker, 2005. "Adjusting Choice Models to Better Predict Market Behavior," Marketing Letters, Springer, vol. 16(3), pages 197-208, December.
    14. Hauser, John R & Urban, Glen L, 1979. "Assessment of Attribute Importances and Consumer Utility Functions: von Neumann-Morgenstern Theory Applied to Consumer Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 5(4), pages 251-262, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrios Chelioudakis & Fotini Kalafati & Efstathios Gerampinis & Nikolaos F. Matsatsinis, 2024. "A web-based multi-criteria decision support system for benchmarking marketing decisions alternatives," Operational Research, Springer, vol. 24(3), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S Tsafarakis & E Grigoroudis & N Matsatsinis, 2011. "Consumer choice behaviour and new product development: an integrated market simulation approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1253-1267, July.
    2. Lacourbe, Paul, 2012. "A model of product line design and introduction sequence with reservation utility," European Journal of Operational Research, Elsevier, vol. 220(2), pages 338-348.
    3. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    4. Pantourakis, Michail & Tsafarakis, Stelios & Zervoudakis, Konstantinos & Altsitsiadis, Efthymios & Andronikidis, Andreas & Ntamadaki, Vasiliki, 2022. "Clonal selection algorithms for optimal product line design: A comparative study," European Journal of Operational Research, Elsevier, vol. 298(2), pages 585-595.
    5. Albritton, M. David & McMullen, Patrick R., 2007. "Optimal product design using a colony of virtual ants," European Journal of Operational Research, Elsevier, vol. 176(1), pages 498-520, January.
    6. Tsafarakis, Stelios & Marinakis, Yannis & Matsatsinis, Nikolaos, 2011. "Particle swarm optimization for optimal product line design," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 13-22.
    7. G. E. Fruchter & A. Fligler & R. S. Winer, 2006. "Optimal Product Line Design: Genetic Algorithm Approach to Mitigate Cannibalization," Journal of Optimization Theory and Applications, Springer, vol. 131(2), pages 227-244, November.
    8. Baltas, George, 2004. "A model for multiple brand choice," European Journal of Operational Research, Elsevier, vol. 154(1), pages 144-149, April.
    9. Matsatsinis, Nikolaos F. & Siskos, Yannis, 1999. "MARKEX: An intelligent decision support system for product development decisions," European Journal of Operational Research, Elsevier, vol. 113(2), pages 336-354, March.
    10. Stelios Tsafarakis, 2016. "Redesigning product lines in a period of economic crisis: a hybrid simulated annealing algorithm with crossover," Annals of Operations Research, Springer, vol. 247(2), pages 617-633, December.
    11. Alexouda, Georgia & Paparrizos, Konstantinos, 2001. "A genetic algorithm approach to the product line design problem using the seller's return criterion: An extensive comparative computational study," European Journal of Operational Research, Elsevier, vol. 134(1), pages 165-178, October.
    12. Alexandre Belloni & Robert Freund & Matthew Selove & Duncan Simester, 2008. "Optimizing Product Line Designs: Efficient Methods and Comparisons," Management Science, INFORMS, vol. 54(9), pages 1544-1552, September.
    13. Tsafarakis, Stelios & Zervoudakis, Konstantinos & Andronikidis, Andreas & Altsitsiadis, Efthymios, 2020. "Fuzzy self-tuning differential evolution for optimal product line design," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1161-1169.
    14. KARRI PASANEN & MIKKO KURTTILA & JOUNI PYKÄlÄINEN & JYRKI KANGAS & PEKKA LESKINEN, 2005. "Mesta — Non-Industrial Private Forest Owners' Decision-Support Environment For The Evaluation Of Alternative Forest Plans Over The Internet," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 601-620.
    15. Li, Hui & Xu, Yunjie & Huang, Lihua, 2021. "When less is more? The contingent effect of product supply limitation in the release of new electronic products," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    16. Gerd Gigerenzer, 1997. "Bounded Rationality: Models of Fast and Frugal Inference," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 133(II), pages 201-218, June.
    17. Shuang Liu & Kirsten Maclean & Cathy Robinson, 2019. "A cost-effective framework to prioritise stakeholder participation options," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 221-241, November.
    18. Smith, Chris M. & Shaw, Duncan, 2019. "The characteristics of problem structuring methods: A literature review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 403-416.
    19. Chorus, Caspar & van Cranenburgh, Sander & Daniel, Aemiro Melkamu & Sandorf, Erlend Dancke & Sobhani, Anae & Szép, Teodóra, 2021. "Obfuscation maximization-based decision-making: Theory, methodology and first empirical evidence," Mathematical Social Sciences, Elsevier, vol. 109(C), pages 28-44.
    20. Mattia Girotti & Richard Meade, 2017. "U.S. Savings Banks' Demutualization and Depositor Welfare," Working Papers 2017-08, Auckland University of Technology, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:4:d:10.1007_s12351-021-00666-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.