IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v150y2003i3p672-687.html
   My bibliography  Save this article

A model and solution method for multi-period sales promotion design

Author

Listed:
  • Nair, Suresh K.
  • Tarasewich, Peter

Abstract

No abstract is available for this item.

Suggested Citation

  • Nair, Suresh K. & Tarasewich, Peter, 2003. "A model and solution method for multi-period sales promotion design," European Journal of Operational Research, Elsevier, vol. 150(3), pages 672-687, November.
  • Handle: RePEc:eee:ejores:v:150:y:2003:i:3:p:672-687
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00526-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ambar G. Rao & Gary Lilien, 1972. "A System of Promotional Models," Management Science, INFORMS, vol. 19(2), pages 152-160, October.
    2. P. V. (Sundar) Balakrishnan & Varghese S. Jacob, 1996. "Genetic Algorithms for Product Design," Management Science, INFORMS, vol. 42(8), pages 1105-1117, August.
    3. Kohli, Rajeev & Krishnamurti, Ramesh, 1989. "Optimal product design using conjoint analysis: Computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 40(2), pages 186-195, May.
    4. Suresh K. Nair & Lakshman S. Thakur & Kuang-Wei Wen, 1995. "Near Optimal Solutions for Product Line Design and Selection: Beam Search Heuristics," Management Science, INFORMS, vol. 41(5), pages 767-785, May.
    5. Green, Paul E & Srinivasan, V, 1978. "Conjoint Analysis in Consumer Research: Issues and Outlook," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 5(2), pages 103-123, Se.
    6. Rajeev Kohli & R. Sukumar, 1990. "Heuristics for Product-Line Design Using Conjoint Analysis," Management Science, INFORMS, vol. 36(12), pages 1464-1478, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bigler, T. & Kammermann, M. & Baumann, P., 2023. "A matheuristic for a customer assignment problem in direct marketing," European Journal of Operational Research, Elsevier, vol. 304(2), pages 689-708.
    2. Sana, Shib Sankar, 2013. "Sales team's initiatives and stock sensitive demand — A production control policy," Economic Modelling, Elsevier, vol. 31(C), pages 783-788.
    3. Cárdenas-Barrón, Leopoldo Eduardo & Sana, Shib Sankar, 2014. "A production-inventory model for a two-echelon supply chain when demand is dependent on sales teams׳ initiatives," International Journal of Production Economics, Elsevier, vol. 155(C), pages 249-258.
    4. Karniouchina, Ekaterina V. & Moore, William L. & van der Rhee, Bo & Verma, Rohit, 2009. "Issues in the use of ratings-based versus choice-based conjoint analysis in operations management research," European Journal of Operational Research, Elsevier, vol. 197(1), pages 340-348, August.
    5. Tsao, Yu-Chung, 2010. "Managing multi-echelon multi-item channels with trade allowances under credit period," International Journal of Production Economics, Elsevier, vol. 127(2), pages 226-237, October.
    6. Fam, Kim-Shyan & Yang, Zhilin, 2006. "Primary influences of environmental uncertainty on promotions budget allocation and performance: A cross-country study of retail advertisers," Journal of Business Research, Elsevier, vol. 59(2), pages 259-267, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albritton, M. David & McMullen, Patrick R., 2007. "Optimal product design using a colony of virtual ants," European Journal of Operational Research, Elsevier, vol. 176(1), pages 498-520, January.
    2. Alexouda, Georgia & Paparrizos, Konstantinos, 2001. "A genetic algorithm approach to the product line design problem using the seller's return criterion: An extensive comparative computational study," European Journal of Operational Research, Elsevier, vol. 134(1), pages 165-178, October.
    3. Winfried Steiner & Harald Hruschka, 2002. "A Probabilistic One-Step Approach to the Optimal Product Line Design Problem Using Conjoint and Cost Data," Review of Marketing Science Working Papers 1-4-1003, Berkeley Electronic Press.
    4. Tarasewich, Peter & McMullen, Patrick R., 2001. "A pruning heuristic for use with multisource product design," European Journal of Operational Research, Elsevier, vol. 128(1), pages 58-73, January.
    5. Tan Wang & Genaro Gutierrez, 2022. "Robust Product Line Design by Protecting the Downside While Minding the Upside," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 194-217, January.
    6. Tsafarakis, Stelios & Marinakis, Yannis & Matsatsinis, Nikolaos, 2011. "Particle swarm optimization for optimal product line design," International Journal of Research in Marketing, Elsevier, vol. 28(1), pages 13-22.
    7. G. E. Fruchter & A. Fligler & R. S. Winer, 2006. "Optimal Product Line Design: Genetic Algorithm Approach to Mitigate Cannibalization," Journal of Optimization Theory and Applications, Springer, vol. 131(2), pages 227-244, November.
    8. Winfried J. Steiner & Harald Hruschka, 2002. "Produktliniengestaltung mit Genetischen Algorithmen," Schmalenbach Journal of Business Research, Springer, vol. 54(7), pages 575-601, November.
    9. Stelios Tsafarakis, 2016. "Redesigning product lines in a period of economic crisis: a hybrid simulated annealing algorithm with crossover," Annals of Operations Research, Springer, vol. 247(2), pages 617-633, December.
    10. Alexandre Belloni & Robert Freund & Matthew Selove & Duncan Simester, 2008. "Optimizing Product Line Designs: Efficient Methods and Comparisons," Management Science, INFORMS, vol. 54(9), pages 1544-1552, September.
    11. Leyuan Shi & Sigurdur Ólafsson & Qun Chen, 2001. "An Optimization Framework for Product Design," Management Science, INFORMS, vol. 47(12), pages 1681-1692, December.
    12. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    13. Xinfang (Jocelyn) Wang & Jeffrey D. Camm & David J. Curry, 2009. "A Branch-and-Price Approach to the Share-of-Choice Product Line Design Problem," Management Science, INFORMS, vol. 55(10), pages 1718-1728, October.
    14. Pantourakis, Michail & Tsafarakis, Stelios & Zervoudakis, Konstantinos & Altsitsiadis, Efthymios & Andronikidis, Andreas & Ntamadaki, Vasiliki, 2022. "Clonal selection algorithms for optimal product line design: A comparative study," European Journal of Operational Research, Elsevier, vol. 298(2), pages 585-595.
    15. Jeffrey D. Camm & James J. Cochran & David J. Curry & Sriram Kannan, 2006. "Conjoint Optimization: An Exact Branch-and-Bound Algorithm for the Share-of-Choice Problem," Management Science, INFORMS, vol. 52(3), pages 435-447, March.
    16. Tsafarakis, Stelios & Zervoudakis, Konstantinos & Andronikidis, Andreas & Altsitsiadis, Efthymios, 2020. "Fuzzy self-tuning differential evolution for optimal product line design," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1161-1169.
    17. Eder Oliveira Abensur, 2007. "Genetic Algorithms for Development of New Financial Products," Brazilian Review of Finance, Brazilian Society of Finance, vol. 5(1), pages 59-77.
    18. Wang, Xinfang (Jocelyn) & Curry, David J., 2012. "A robust approach to the share-of-choice product design problem," Omega, Elsevier, vol. 40(6), pages 818-826.
    19. Van den Broeke, Maud & Boute, Robert & Cardoen, Brecht & Samii, Behzad, 2017. "An efficient solution method to design the cost-minimizing platform portfolio," European Journal of Operational Research, Elsevier, vol. 259(1), pages 236-250.
    20. Evan Rash & Karl Kempf, 2012. "Product Line Design and Scheduling at Intel," Interfaces, INFORMS, vol. 42(5), pages 425-436, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:150:y:2003:i:3:p:672-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.