IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v186y2008i3p915-930.html
   My bibliography  Save this article

Backtracking and exchange of information: Methods to enhance a beam search algorithm for assembly line scheduling

Author

Listed:
  • Sabuncuoglu, Ihsan
  • Gocgun, Yasin
  • Erel, Erdal

Abstract

No abstract is available for this item.

Suggested Citation

  • Sabuncuoglu, Ihsan & Gocgun, Yasin & Erel, Erdal, 2008. "Backtracking and exchange of information: Methods to enhance a beam search algorithm for assembly line scheduling," European Journal of Operational Research, Elsevier, vol. 186(3), pages 915-930, May.
  • Handle: RePEc:eee:ejores:v:186:y:2008:i:3:p:915-930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00231-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beraldi, Patrizia & Ruszczynski, Andrzej, 2005. "Beam search heuristic to solve stochastic integer problems under probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 167(1), pages 35-47, November.
    2. Sabuncuoglu, I. & Bayiz, M., 2000. "Analysis of reactive scheduling problems in a job shop environment," European Journal of Operational Research, Elsevier, vol. 126(3), pages 567-586, November.
    3. Sabuncuoglu, I. & Bayiz, M., 1999. "Job shop scheduling with beam search," European Journal of Operational Research, Elsevier, vol. 118(2), pages 390-412, October.
    4. McMullen, P.R. & Tarasewich, Peter, 2005. "A beam search heuristic method for mixed-model scheduling with setups," International Journal of Production Economics, Elsevier, vol. 96(2), pages 273-283, May.
    5. Ghirardi, M. & Potts, C. N., 2005. "Makespan minimization for scheduling unrelated parallel machines: A recovering beam search approach," European Journal of Operational Research, Elsevier, vol. 165(2), pages 457-467, September.
    6. F Della Croce & V T'kindt, 2002. "A Recovering Beam Search algorithm for the one-machine dynamic total completion time scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(11), pages 1275-1280, November.
    7. Alexouda, Georgia & Paparrizos, Konstantinos, 2001. "A genetic algorithm approach to the product line design problem using the seller's return criterion: An extensive comparative computational study," European Journal of Operational Research, Elsevier, vol. 134(1), pages 165-178, October.
    8. Lim, A. & Rodrigues, B. & Zhang, X., 2006. "Scheduling sports competitions at multiple venues--Revisited," European Journal of Operational Research, Elsevier, vol. 175(1), pages 171-186, November.
    9. Bautista, J. & Companys, R. & Corominas, A., 1996. "Heuristics and exact algorithms for solving the Monden problem," European Journal of Operational Research, Elsevier, vol. 88(1), pages 101-113, January.
    10. Esteve, B. & Aubijoux, C. & Chartier, A. & T'kindt, V., 2006. "A recovering beam search algorithm for the single machine Just-in-Time scheduling problem," European Journal of Operational Research, Elsevier, vol. 172(3), pages 798-813, August.
    11. Zhou, Xuesong & Zhong, Ming, 2005. "Bicriteria train scheduling for high-speed passenger railroad planning applications," European Journal of Operational Research, Elsevier, vol. 167(3), pages 752-771, December.
    12. Yow-yuh Leu & Philip Huang & Roberta Russell, 1997. "Using beam search techniques for sequencing mixed-model assembly lines," Annals of Operations Research, Springer, vol. 70(0), pages 379-397, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting, Ching-Jung & Wu, Kun-Chih, 2017. "Optimizing container relocation operations at container yards with beam search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 17-31.
    2. Nils Boysen & Florian Jaehn & Erwin Pesch, 2011. "Scheduling Freight Trains in Rail-Rail Transshipment Yards," Transportation Science, INFORMS, vol. 45(2), pages 199-211, May.
    3. Zhang, Sicheng & Li, Xiang & Zhang, Bowen & Wang, Shouyang, 2020. "Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system," European Journal of Operational Research, Elsevier, vol. 283(2), pages 441-460.
    4. Kress, Dominik & Dornseifer, Jan & Jaehn, Florian, 2019. "An exact solution approach for scheduling cooperative gantry cranes," European Journal of Operational Research, Elsevier, vol. 273(1), pages 82-101.
    5. Portoleau, Tom & Artigues, Christian & Guillaume, Romain, 2024. "Robust decision trees for the multi-mode project scheduling problem with a resource investment objective and uncertain activity duration," European Journal of Operational Research, Elsevier, vol. 312(2), pages 525-540.
    6. H. Mosadegh & S.M.T. Fatemi Ghomi & G.A. Süer, 2017. "Heuristic approaches for mixed-model sequencing problem with stochastic processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2857-2880, May.
    7. Erenay, Fatih Safa & Sabuncuoglu, Ihsan & Toptal, Aysegül & Tiwari, Manoj Kumar, 2010. "New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 201(1), pages 89-98, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge M. S. Valente, 2007. "Beam search heuristics for the single machine scheduling problem with linear earliness and quadratic tardiness costs," FEP Working Papers 250, Universidade do Porto, Faculdade de Economia do Porto.
    2. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    3. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    4. J M S Valente, 2010. "Beam search heuristics for quadratic earliness and tardiness scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 620-631, April.
    5. Bennell, J.A. & Cabo, M. & Martínez-Sykora, A., 2018. "A beam search approach to solve the convex irregular bin packing problem with guillotine guts," European Journal of Operational Research, Elsevier, vol. 270(1), pages 89-102.
    6. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    7. Erenay, Fatih Safa & Sabuncuoglu, Ihsan & Toptal, Aysegül & Tiwari, Manoj Kumar, 2010. "New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 201(1), pages 89-98, February.
    8. Billaut, Jean-Charles & Della Croce, Federico & Grosso, Andrea, 2015. "A single machine scheduling problem with two-dimensional vector packing constraints," European Journal of Operational Research, Elsevier, vol. 243(1), pages 75-81.
    9. Jorge M. S. Valente & Rui A. F. S. Alves, 2004. "Beam search algorithms for the early/tardy scheduling problem with release dates," FEP Working Papers 143, Universidade do Porto, Faculdade de Economia do Porto.
    10. Parreño, F. & Alonso, M.T. & Alvarez-Valdes, R., 2020. "Solving a large cutting problem in the glass manufacturing industry," European Journal of Operational Research, Elsevier, vol. 287(1), pages 378-388.
    11. Zhou, Xuesong & Zhong, Ming, 2007. "Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 320-341, March.
    12. Jorge M. S. Valente & Rui A. F. S. Alves, 2004. "Filtered and Recovering beam search algorithms for the early/tardy scheduling problem with no idle time," FEP Working Papers 142, Universidade do Porto, Faculdade de Economia do Porto.
    13. Jorge M. S. Valente, 2005. "Beam search algorithms for the single machine total weighted tardiness scheduling problem with sequence-dependent setups," FEP Working Papers 186, Universidade do Porto, Faculdade de Economia do Porto.
    14. Ding, Fong-Yuen & Zhu, Jin & Sun, Hui, 2006. "Comparing two weighted approaches for sequencing mixed-model assembly lines with multiple objectives," International Journal of Production Economics, Elsevier, vol. 102(1), pages 108-131, July.
    15. Albrecht, Amie & Howlett, Phil & Pudney, Peter & Vu, Xuan & Zhou, Peng, 2016. "The key principles of optimal train control—Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 482-508.
    16. Russell, Robert A. & Urban, Timothy L., 2010. "Multicriteria models for planning power-networking events," European Journal of Operational Research, Elsevier, vol. 207(1), pages 83-91, November.
    17. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    18. Jiewu Leng & Pingyu Jiang, 2019. "Dynamic scheduling in RFID-driven discrete manufacturing system by using multi-layer network metrics as heuristic information," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 979-994, March.
    19. Xin Jia Jiang & Yanhua Xu & Chenhao Zhou & Ek Peng Chew & Loo Hay Lee, 2018. "Frame Trolley Dispatching Algorithm for the Frame Bridge Based Automated Container Terminal," Transportation Science, INFORMS, vol. 52(3), pages 722-737, June.
    20. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:186:y:2008:i:3:p:915-930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.