IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v9y2018i3p1335-1370.html
   My bibliography  Save this article

Heterogeneous treatment effects with mismeasured endogenous treatment

Author

Listed:
  • Takuya Ura

Abstract

This paper studies the identifying power of an instrumental variable in the nonparametric heterogeneous treatment effect framework when a binary treatment is mismeasured and endogenous. Using a binary instrumental variable, I characterize the sharp identified set for the local average treatment effect under the exclusion restriction of an instrument and the deterministic monotonicity of the true treatment in the instrument. Even allowing for general measurement error (e.g., the measurement error is endogenous), it is still possible to obtain finite bounds on the local average treatment effect. Notably, the Wald estimand is an upper bound on the local average treatment effect, but it is not the sharp bound in general. I also provide a confidence interval for the local average treatment effect with uniformly asymptotically valid size control. Furthermore, I demonstrate that the identification strategy of this paper offers a new use of repeated measurements for tightening the identified set.

Suggested Citation

  • Takuya Ura, 2018. "Heterogeneous treatment effects with mismeasured endogenous treatment," Quantitative Economics, Econometric Society, vol. 9(3), pages 1335-1370, November.
  • Handle: RePEc:wly:quante:v:9:y:2018:i:3:p:1335-1370
    DOI: 10.3982/QE886
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/QE886
    Download Restriction: no

    File URL: https://libkey.io/10.3982/QE886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    2. Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019. "On the estimation of treatment effects with endogenous misreporting," Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
    3. Francis J. DiTraglia & Camilo Garcia-Jimeno, 2020. "Identifying the effect of a mis-classified, binary, endogenous regressor," Papers 2011.07272, arXiv.org.
    4. Vira Semenova & Matt Goldman & Victor Chernozhukov & Matt Taddy, 2023. "Inference on heterogeneous treatment effects in high‐dimensional dynamic panels under weak dependence," Quantitative Economics, Econometric Society, vol. 14(2), pages 471-510, May.
    5. Acerenza, Santiago & Ban, Kyunghoon & Kedagni, Desire, 2021. "Marginal Treatment Effects with Misclassified Treatment," ISU General Staff Papers 202106180700001132, Iowa State University, Department of Economics.
    6. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2022. "Identification Of Regression Models With A Misclassified And Endogenous Binary Regressor," Econometric Theory, Cambridge University Press, vol. 38(6), pages 1117-1139, December.
    7. Augustine Denteh & D'esir'e K'edagni, 2022. "Misclassification in Difference-in-differences Models," Papers 2207.11890, arXiv.org, revised Jul 2022.
    8. Kruse, Herman & Myhre, Andreas, 2021. "Early Retirement Provision for Elderly Displaced Workers," MPRA Paper 118689, University Library of Munich, Germany, revised 21 Sep 2023.
    9. Tommasi, Denni & Zhang, Lina, 2024. "Bounding program benefits when participation is misreported," Journal of Econometrics, Elsevier, vol. 238(1).
    10. Kruse, Herman & Myhre, Andreas, 2021. "Early Retirement Provision for Elderly Displaced Workers," MPRA Paper 109431, University Library of Munich, Germany.
    11. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    12. DiTraglia, Francis J. & García-Jimeno, Camilo, 2019. "Identifying the effect of a mis-classified, binary, endogenous regressor," Journal of Econometrics, Elsevier, vol. 209(2), pages 376-390.
    13. Vitor Possebom, 2021. "Crime and Mismeasured Punishment: Marginal Treatment Effect with Misclassification," Papers 2106.00536, arXiv.org, revised Jul 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:9:y:2018:i:3:p:1335-1370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.