IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/59-13.html
   My bibliography  Save this paper

High dimensional methods and inference on structural and treatment effects

Author

Listed:
  • Alexandre Belloni

    (Institute for Fiscal Studies)

  • Victor Chernozhukov

    (Institute for Fiscal Studies and MIT)

  • Christian Hansen

    (Institute for Fiscal Studies and Chicago GSB)

Abstract

The goal of many empirical papers in economics is to provide an estimate of the causal or structural effect of a change in a treatment or policy variable, such as a government intervention or a price, on another economically interesting variable, such as unemployment or amount of a product purchased. Applied economists attempting to estimate such structural effects face the problems that economically interesting quantities like government policies are rarely randomly assigned and that the available data are often high-dimensional. Failure to address either of these issues generally leads to incorrect inference about structural effects, so methodology that is appropriate for estimating and performing inference about these effects when treatment is not randomly assigned and there are many potential control variables provides a useful addition to the tools available to applied economists.

Suggested Citation

  • Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers CWP59/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:59/13
    as

    Download full text from publisher

    File URL: http://www.cemmap.ac.uk/wps/cwp591313.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. John J. Donohue III & Steven D. Levitt, 2008. "Measurement Error, Legalized Abortion, and the Decline in Crime: A Response to Foote and Goetz," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(1), pages 425-440.
    2. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    3. Eric Gautier & Alexandre Tsybakov, 2011. "High-Dimensional Instrumental Variables Regression and Confidence Sets," Working Papers 2011-13, Center for Research in Economics and Statistics.
    4. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    5. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.
    6. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107016064, October.
    8. Ng Serena & Bai Jushan, 2009. "Selecting Instrumental Variables in a Data Rich Environment," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-34, April.
    9. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    10. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107638105, October.
    11. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    12. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    13. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Honest confidence regions for a regression parameter in logistic regression with a large number of controls," CeMMAP working papers CWP67/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107016057, October.
    15. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    16. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    17. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107674165, October.
    18. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    19. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression models," CeMMAP working papers CWP24/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    21. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    22. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    23. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    24. Daron Acemoglu & Simon Johnson & James A. Robinson, 2001. "The Colonial Origins of Comparative Development: An Empirical Investigation," American Economic Review, American Economic Association, vol. 91(5), pages 1369-1401, December.
    25. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    26. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107627314, October.
    27. Acemoglu,Daron & Arellano,Manuel & Dekel,Eddie (ed.), 2013. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781107016040, October.
    28. Christopher L. Foote & Christopher F. Goetz, 2008. "The Impact of Legalized Abortion on Crime: Comment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(1), pages 407-423.
    29. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "Supplementary Appendix for "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls"," Papers 1305.6099, arXiv.org, revised Jun 2013.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016. "Post-Selection Inference for Generalized Linear Models With Many Controls," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
    2. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Honest confidence regions for a regression parameter in logistic regression with a large number of controls," CeMMAP working papers CWP67/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    6. Liang, Yan, 2022. "Impact of financial development on outsourcing and aggregate productivity," Journal of Development Economics, Elsevier, vol. 154(C).
    7. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    8. Demian Pouzo, 2015. "On the Non-Asymptotic Properties of Regularized M-estimators," Papers 1512.06290, arXiv.org, revised Oct 2016.
    9. Pedro Carneiro & Michael Lokshin & Nithin Umapathi, 2017. "Average and Marginal Returns to Upper Secondary Schooling in Indonesia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 16-36, January.
    10. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.
    11. Karun Adusumilli & Taisuke Otsu, 2015. "Nonparametric instrumental regression with errors in variables," STICERD - Econometrics Paper Series /2015/585, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Simeon Alder & Guillermo Ordonez, 2016. "Deceptive Redistribution," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 22, pages 223-239, October.
    13. Toshihiko Mukoyama & Latchezar Popov, 2020. "Industrialization and the evolution of enforcement institutions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(3), pages 745-788, April.
    14. Pushan Dutt & Ilia Tsetlin, 2021. "Income distribution and economic development: Insights from machine learning," Economics and Politics, Wiley Blackwell, vol. 33(1), pages 1-36, March.
    15. Simeon Alder & Guillermo Ordonez, 2016. "Deceptive Redistribution," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 22, pages 223-239, October.
    16. Elsby, Michael W.L. & Hobijn, Bart & Şahin, Ayşegül, 2015. "On the importance of the participation margin for labor market fluctuations," Journal of Monetary Economics, Elsevier, vol. 72(C), pages 64-82.
    17. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    18. Özgür Orhangazi & A. Erinç Yeldan, 2021. "The Re‐making of the Turkish Crisis," Development and Change, International Institute of Social Studies, vol. 52(3), pages 460-503, May.
    19. Alessandra Bonfiglioli & Rosario Crinò & Gino Gancia, 2018. "Firms and Economic Performance: A view from Trade," Working Papers 1034, Barcelona School of Economics.
    20. Guriev, Sergei & Treisman, Daniel, 2020. "A theory of informational autocracy," Journal of Public Economics, Elsevier, vol. 186(C).

    More about this item

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:59/13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.