IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/14376.html
   My bibliography  Save this paper

Efficiency bounds for missing data models with semiparametric restrictions

Author

Listed:
  • Bryan S. Graham

Abstract

This paper shows that the semiparametric efficiency bound for a parameter identified by an unconditional moment restriction with data missing at random (MAR) coincides with that of a particular augmented moment condition problem. The augmented system consists of the inverse probability weighted (IPW) original moment restriction and an additional conditional moment restriction which exhausts all other implications of the MAR assumption. The paper also investigates the value of additional semiparametric restrictions on the conditional expectation function (CEF) of the original moment function given always- observed covariates. In the program evaluation context, for example, such restrictions are implied by semiparametric models for the potential outcome CEFs given baseline covariates. The efficiency bound associated with this model is shown to also coincide with that of a particular moment condition problem. Some implications of these results for estimation are briefly discussed.

Suggested Citation

  • Bryan S. Graham, 2008. "Efficiency bounds for missing data models with semiparametric restrictions," NBER Working Papers 14376, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:14376
    Note: TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w14376.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    2. Chamberlain, Gary, 1992. "Sequential Moment Restrictions in Panel Data: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 20-26, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prokhorov, Artem & Schmidt, Peter, 2009. "GMM redundancy results for general missing data problems," Journal of Econometrics, Elsevier, vol. 151(1), pages 47-55, July.
    2. Chris Muris, 2020. "Efficient GMM Estimation with Incomplete Data," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 518-530, July.
    3. Kitazawa, Yoshitsugu, 2001. "Exponential regression of dynamic panel data models," Economics Letters, Elsevier, vol. 73(1), pages 7-13, October.
    4. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    5. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Alexander Hijzen & Sébastien Jean & Thierry Mayer, 2011. "The effects at home of initiating production abroad: evidence from matched French firms," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 147(3), pages 457-483, September.
    7. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    8. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    9. Iain M. Cockburn & Megan J. MacGarvie, 2011. "Entry and Patenting in the Software Industry," Management Science, INFORMS, vol. 57(5), pages 915-933, May.
    10. Bergman, Mats A. & Johansson, Per & Bergman, M.A., 2002. "Large investments in the pulp and paper industry: a count data regression analysis," Journal of Forest Economics, Elsevier, vol. 8(1), pages 29-52.
    11. Mariacristina De Nardi & Eric French & John Bailey Jones, 2016. "Medicaid Insurance in Old Age," American Economic Review, American Economic Association, vol. 106(11), pages 3480-3520, November.
    12. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.
    13. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    14. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    15. Samuel D. Lendle & Meenakshi S. Subbaraman & Mark J. van der Laan, 2013. "Identification and Efficient Estimation of the Natural Direct Effect among the Untreated," Biometrics, The International Biometric Society, vol. 69(2), pages 310-317, June.
    16. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
    17. Hahn, Jinyong, 1997. "Efficient estimation of panel data models with sequential moment restrictions," Journal of Econometrics, Elsevier, vol. 79(1), pages 1-21, July.
    18. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    19. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    20. Frölich, Markus & Michaelowa, Katharina, 2004. "Peer effects and textbooks in primary education: Evidence from francophone sub-Saharan Africa," HWWA Discussion Papers 311, Hamburg Institute of International Economics (HWWA).
    21. Jesse Rothstein & Albert Yoon, 2006. "Mismatch in Law School," Working Papers 29, Princeton University, School of Public and International Affairs, Education Research Section..

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:14376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.