IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v488y2024ics0304380023003228.html
   My bibliography  Save this article

Background selection complexity influences Maxent predictive performance in freshwater systems

Author

Listed:
  • Schartel, Tyler E.
  • Cao, Yong

Abstract

Absence data are often lacking for species distribution modeling (SDM) purposes. This necessitates selecting background or pseudo-absence observations that influence SDM performance. Little is understood about how background selection affects SDM prediction in lotic systems. Here we test six background selection methods that implement different combinations of three selection filters concerning 1) sampling biases in species occurrence data, 2) geographic restriction to regions accessible to the species modeled, and 3) species occurrence relative to stream size, a key habitat factor. These six methods are used with Maxent to develop binary presence-absence predictions of 71 freshwater mussel distributions in the Midwestern United States. Prediction accuracy was evaluated with a separate validation presence-absence dataset derived from intensive surveys. Pairwise comparisons of background selection methods across species recorded in the validation dataset revealed significant differences relative to the Area Under Curve (AUC), the similarity between the prediction and observation, and the True Skill Statistic (TSS) metrics. The prediction specificity for those species absent in the validation dataset was also significantly affected by the background selection method. Implementing the sampling bias filter increased prediction similarity with validation data, AUC and TSS for species with validation presences, as well as prediction specificity for species without validation presences. Our results provide much needed insight into how background selection influences presence-background SDM performance in lotic systems. These findings can guide how to leverage available data and biological understanding to produce accurate SDM predictions that prioritize research objectives and goals regardless of study system or habitat.

Suggested Citation

  • Schartel, Tyler E. & Cao, Yong, 2024. "Background selection complexity influences Maxent predictive performance in freshwater systems," Ecological Modelling, Elsevier, vol. 488(C).
  • Handle: RePEc:eee:ecomod:v:488:y:2024:i:c:s0304380023003228
    DOI: 10.1016/j.ecolmodel.2023.110592
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023003228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew P Hill & John S Terblanche, 2014. "Niche Overlap of Congeneric Invaders Supports a Single-Species Hypothesis and Provides Insight into Future Invasion Risk: Implications for Global Management of the Bactrocera dorsalis Complex," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    2. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    3. Schmidt, Heiko & Radinger, Johannes & Teschlade, Daniel & Stoll, Stefan, 2020. "The role of spatial units in modelling freshwater fish distributions: Comparing a subcatchment and river network approach using MaxEnt," Ecological Modelling, Elsevier, vol. 418(C).
    4. Chefaoui, Rosa M. & Lobo, Jorge M., 2008. "Assessing the effects of pseudo-absences on predictive distribution model performance," Ecological Modelling, Elsevier, vol. 210(4), pages 478-486.
    5. Jarnevich, Catherine S. & Talbert, Marian & Morisette, Jeffery & Aldridge, Cameron & Brown, Cynthia S. & Kumar, Sunil & Manier, Daniel & Talbert, Colin & Holcombe, Tracy, 2017. "Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: An example with background selection," Ecological Modelling, Elsevier, vol. 363(C), pages 48-56.
    6. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    7. Stokland, Jogeir N. & Halvorsen, Rune & Støa, Bente, 2011. "Species distribution modelling—Effect of design and sample size of pseudo-absence observations," Ecological Modelling, Elsevier, vol. 222(11), pages 1800-1809.
    8. Johnston, Alison & Moran, Nick & Musgrove, Andy & Fink, Daniel & Baillie, Stephen R., 2020. "Estimating species distributions from spatially biased citizen science data," Ecological Modelling, Elsevier, vol. 422(C).
    9. Brice B Hanberry & Hong S He & Brian J Palik, 2012. "Pseudoabsence Generation Strategies for Species Distribution Models," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    10. Anderson, Robert P. & Gonzalez, Israel, 2011. "Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent," Ecological Modelling, Elsevier, vol. 222(15), pages 2796-2811.
    11. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horemans, Dante M.L. & Friedrichs, Marjorie A.M. & St-Laurent, Pierre & Hood, Raleigh R. & Brown, Christopher W., 2024. "Evaluating the skill of correlative species distribution models trained with mechanistic model output," Ecological Modelling, Elsevier, vol. 491(C).
    2. Steen, Bart & Broennimann, Olivier & Maiorano, Luigi & Guisan, Antoine, 2024. "How sensitive are species distribution models to different background point selection strategies? A test with species at various equilibrium levels," Ecological Modelling, Elsevier, vol. 493(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    2. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    3. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    4. Santiago José Elías Velazco & Franklin Galvão & Fabricio Villalobos & Paulo De Marco Júnior, 2017. "Using worldwide edaphic data to model plant species niches: An assessment at a continental extent," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-24, October.
    5. Cesar A Marchioro, 2016. "Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    6. Wolke Tobón-Niedfeldt & Alicia Mastretta-Yanes & Tania Urquiza-Haas & Bárbara Goettsch & Angela P. Cuervo-Robayo & Esmeralda Urquiza-Haas & M. Andrea Orjuela-R & Francisca Acevedo Gasman & Oswaldo Oli, 2022. "Incorporating evolutionary and threat processes into crop wild relatives conservation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Iturbide, Maialen & Bedia, Joaquín & Herrera, Sixto & del Hierro, Oscar & Pinto, Miriam & Gutiérrez, Jose Manuel, 2015. "A framework for species distribution modelling with improved pseudo-absence generation," Ecological Modelling, Elsevier, vol. 312(C), pages 166-174.
    8. Fourcade, Yoan, 2021. "Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara," Ecological Modelling, Elsevier, vol. 457(C).
    9. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    10. Coro, Gianpaolo & Pagano, Pasquale & Ellenbroek, Anton, 2013. "Combining simulated expert knowledge with Neural Networks to produce Ecological Niche Models for Latimeria chalumnae," Ecological Modelling, Elsevier, vol. 268(C), pages 55-63.
    11. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    12. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    13. Halvorsen, Rune & Mazzoni, Sabrina & Dirksen, John Wirkola & Næsset, Erik & Gobakken, Terje & Ohlson, Mikael, 2016. "How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?," Ecological Modelling, Elsevier, vol. 328(C), pages 108-118.
    14. Pimenta, Mayra & Andrade, André Felipe Alves de & Fernandes, Fernando Hiago Souza & Amboni, Mayra Pereira de Melo & Almeida, Renata Silva & Soares, Ana Hermínia Simões de Bello & Falcon, Guth Berger &, 2022. "One size does not fit all: Priority areas for real world problems," Ecological Modelling, Elsevier, vol. 470(C).
    15. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    16. Ortner, Olivia & Wallentin, Gudrun, 2020. "Integration of landscape metric surfaces derived from vector data improves species distribution models," Ecological Modelling, Elsevier, vol. 431(C).
    17. Rotllan-Puig, Xavier & Traveset, Anna, 2021. "Determining the minimal background area for species distribution models: MinBAR package," Ecological Modelling, Elsevier, vol. 439(C).
    18. Melo-Merino, Sara M. & Reyes-Bonilla, Héctor & Lira-Noriega, Andrés, 2020. "Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence," Ecological Modelling, Elsevier, vol. 415(C).
    19. Whitford, Anna M. & Shipley, Benjamin R. & McGuire, Jenny L., 2024. "The influence of the number and distribution of background points in presence-background species distribution models," Ecological Modelling, Elsevier, vol. 488(C).
    20. Hallgren, W. & Santana, F. & Low-Choy, S. & Zhao, Y. & Mackey, B., 2019. "Species distribution models can be highly sensitive to algorithm configuration," Ecological Modelling, Elsevier, vol. 408(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:488:y:2024:i:c:s0304380023003228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.