IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v268y2013icp55-63.html
   My bibliography  Save this article

Combining simulated expert knowledge with Neural Networks to produce Ecological Niche Models for Latimeria chalumnae

Author

Listed:
  • Coro, Gianpaolo
  • Pagano, Pasquale
  • Ellenbroek, Anton

Abstract

The order Coelacanthiformes, once thought extinct, is much studied mainly because it contains species that share characteristics with lungfishes and tetrapods. Only a few years ago living specimens were discovered to science, and observations are so rare that the species are considered to be critically endangered. Observations include Latimeria chalumnae in deep waters of the coast of south eastern Africa while Latimeria menadoensis is known from similar habitats in Indonesian waters. Because of the interest around these enigmatic species, Ecological Niche Modelling techniques have been applied to estimate their distribution. The underlying assumption is that the environmental characteristics of the observation points are representative for the species. In this article we evaluate the difference in the output between the niche distributions produced by two expert systems and by two models based on Artificial Neural Networks. We evaluate the predictive behaviour of such models by focusing on L. chalumnae, as more observations are available for this species with respect to L. menadoensis. Finally, we assess the reliability of the maps by numerically evaluating the representativeness of the environmental characteristics in the observation locations, with respect to an area where the models show significant differences. This approach is different from previous ones because one of the expert systems is used to infer pseudo-absence points, that are successively employed to feed a Neural Network. One of the models based on this Neural Network is used to estimate the potential distribution and to produce a more extended map. The method promises to be applicable to other species with few observations, and allows to exploit the power of presence∖absence based techniques.

Suggested Citation

  • Coro, Gianpaolo & Pagano, Pasquale & Ellenbroek, Anton, 2013. "Combining simulated expert knowledge with Neural Networks to produce Ecological Niche Models for Latimeria chalumnae," Ecological Modelling, Elsevier, vol. 268(C), pages 55-63.
  • Handle: RePEc:eee:ecomod:v:268:y:2013:i:c:p:55-63
    DOI: 10.1016/j.ecolmodel.2013.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013003980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 427-432, June.
    2. Stokland, Jogeir N. & Halvorsen, Rune & Støa, Bente, 2011. "Species distribution modelling—Effect of design and sample size of pseudo-absence observations," Ecological Modelling, Elsevier, vol. 222(11), pages 1800-1809.
    3. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(4), pages 629-637, August.
    4. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(5), pages 777-788, October.
    5. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(1), pages 151-160, February.
    6. Chefaoui, Rosa M. & Lobo, Jorge M., 2008. "Assessing the effects of pseudo-absences on predictive distribution model performance," Ecological Modelling, Elsevier, vol. 210(4), pages 478-486.
    7. VanDerWal, Jeremy & Shoo, Luke P. & Graham, Catherine & Williams, Stephen E., 2009. "Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?," Ecological Modelling, Elsevier, vol. 220(4), pages 589-594.
    8. Ready, Jonathan & Kaschner, Kristin & South, Andy B. & Eastwood, Paul D. & Rees, Tony & Rius, Josephine & Agbayani, Eli & Kullander, Sven & Froese, Rainer, 2010. "Predicting the distributions of marine organisms at the global scale," Ecological Modelling, Elsevier, vol. 221(3), pages 467-478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coro, Gianpaolo & Magliozzi, Chiara & Vanden Berghe, Edward & Bailly, Nicolas & Ellenbroek, Anton & Pagano, Pasquale, 2016. "Estimating absence locations of marine species from data of scientific surveys in OBIS," Ecological Modelling, Elsevier, vol. 323(C), pages 61-76.
    2. Coro, Gianpaolo & Magliozzi, Chiara & Ellenbroek, Anton & Pagano, Pasquale, 2015. "Improving data quality to build a robust distribution model for Architeuthis dux," Ecological Modelling, Elsevier, vol. 305(C), pages 29-39.
    3. Coro, Gianpaolo, 2020. "A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate," Ecological Modelling, Elsevier, vol. 431(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Wanwan & Papeş, Monica & Tran, Liem & Grant, Jerome & Washington-Allen, Robert & Stewart, Scott & Wiggins, Gregory, 2018. "The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift," Ecological Modelling, Elsevier, vol. 388(C), pages 1-9.
    2. Stokland, Jogeir N. & Halvorsen, Rune & Støa, Bente, 2011. "Species distribution modelling—Effect of design and sample size of pseudo-absence observations," Ecological Modelling, Elsevier, vol. 222(11), pages 1800-1809.
    3. Senait D Senay & Susan P Worner & Takayoshi Ikeda, 2013. "Novel Three-Step Pseudo-Absence Selection Technique for Improved Species Distribution Modelling," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-16, August.
    4. Hengl, Tomislav & Sierdsema, Henk & Radović, Andreja & Dilo, Arta, 2009. "Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging," Ecological Modelling, Elsevier, vol. 220(24), pages 3499-3511.
    5. Saupe, E.E. & Barve, V. & Myers, C.E. & Soberón, J. & Barve, N. & Hensz, C.M. & Peterson, A.T. & Owens, H.L. & Lira-Noriega, A., 2012. "Variation in niche and distribution model performance: The need for a priori assessment of key causal factors," Ecological Modelling, Elsevier, vol. 237, pages 11-22.
    6. Coro, Gianpaolo & Vilas, Luis Gonzalez & Magliozzi, Chiara & Ellenbroek, Anton & Scarponi, Paolo & Pagano, Pasquale, 2018. "Forecasting the ongoing invasion of Lagocephalus sceleratus in the Mediterranean Sea," Ecological Modelling, Elsevier, vol. 371(C), pages 37-49.
    7. Pontin, D.R. & Schliebs, S. & Worner, S.P. & Watts, M.J., 2011. "Determining factors that influence the dispersal of a pelagic species: A comparison between artificial neural networks and evolutionary algorithms," Ecological Modelling, Elsevier, vol. 222(10), pages 1657-1665.
    8. VanDerWal, Jeremy & Shoo, Luke P. & Graham, Catherine & Williams, Stephen E., 2009. "Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?," Ecological Modelling, Elsevier, vol. 220(4), pages 589-594.
    9. Giovanelli, João G.R. & de Siqueira, Marinez Ferreira & Haddad, Célio F.B. & Alexandrino, João, 2010. "Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods," Ecological Modelling, Elsevier, vol. 221(2), pages 215-224.
    10. Coro, Gianpaolo & Magliozzi, Chiara & Vanden Berghe, Edward & Bailly, Nicolas & Ellenbroek, Anton & Pagano, Pasquale, 2016. "Estimating absence locations of marine species from data of scientific surveys in OBIS," Ecological Modelling, Elsevier, vol. 323(C), pages 61-76.
    11. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    12. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    13. Okitonyumbe Y.F., Joseph & Ulungu, Berthold E.-L., 2013. "Nouvelle caractérisation des solutions efficaces des problèmes d’optimisation combinatoire multi-objectif [New characterization of efficient solution in multi-objective combinatorial optimization]," MPRA Paper 66123, University Library of Munich, Germany.
    14. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    15. Monica Motta & Caterina Sartori, 2020. "Normality and Nondegeneracy of the Maximum Principle in Optimal Impulsive Control Under State Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 44-71, April.
    16. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    17. Chenchen Wu & Dachuan Xu & Donglei Du & Wenqing Xu, 2016. "An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1017-1035, November.
    18. Gengping Zhu & Matthew J Petersen & Wenjun Bu, 2012. "Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    19. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    20. Ernst Althaus & Felix Rauterberg & Sarah Ziegler, 2020. "Computing Euclidean Steiner trees over segments," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 309-325, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:268:y:2013:i:c:p:55-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.