IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v363y2017icp48-56.html
   My bibliography  Save this article

Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: An example with background selection

Author

Listed:
  • Jarnevich, Catherine S.
  • Talbert, Marian
  • Morisette, Jeffery
  • Aldridge, Cameron
  • Brown, Cynthia S.
  • Kumar, Sunil
  • Manier, Daniel
  • Talbert, Colin
  • Holcombe, Tracy

Abstract

Evaluating the conditions where a species can persist is an important question in ecology both to understand tolerances of organisms and to predict distributions across landscapes. Presence data combined with background or pseudo-absence locations are commonly used with species distribution modeling to develop these relationships. However, there is not a standard method to generate background or pseudo-absence locations, and method choice affects model outcomes. We evaluated combinations of both model algorithms (simple and complex generalized linear models, multivariate adaptive regression splines, Maxent, boosted regression trees, and random forest) and background methods (random, minimum convex polygon, and continuous and binary kernel density estimator (KDE)) to assess the sensitivity of model outcomes to choices made. We evaluated six questions related to model results, including five beyond the common comparison of model accuracy assessment metrics (biological interpretability of response curves, cross-validation robustness, independent data accuracy and robustness, and prediction consistency). For our case study with cheatgrass in the western US, random forest was least sensitive to background choice and the binary KDE method was least sensitive to model algorithm choice. While this outcome may not hold for other locations or species, the methods we used can be implemented to help determine appropriate methodologies for particular research questions.

Suggested Citation

  • Jarnevich, Catherine S. & Talbert, Marian & Morisette, Jeffery & Aldridge, Cameron & Brown, Cynthia S. & Kumar, Sunil & Manier, Daniel & Talbert, Colin & Holcombe, Tracy, 2017. "Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: An example with background selection," Ecological Modelling, Elsevier, vol. 363(C), pages 48-56.
  • Handle: RePEc:eee:ecomod:v:363:y:2017:i:c:p:48-56
    DOI: 10.1016/j.ecolmodel.2017.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016308213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    2. VanDerWal, Jeremy & Shoo, Luke P. & Graham, Catherine & Williams, Stephen E., 2009. "Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?," Ecological Modelling, Elsevier, vol. 220(4), pages 589-594.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    2. Schartel, Tyler E. & Cao, Yong, 2024. "Background selection complexity influences Maxent predictive performance in freshwater systems," Ecological Modelling, Elsevier, vol. 488(C).
    3. Nicholas E Young & Catherine S Jarnevich & Helen R Sofaer & Ian Pearse & Julia Sullivan & Peder Engelstad & Thomas J Stohlgren, 2020. "A modeling workflow that balances automation and human intervention to inform invasive plant management decisions at multiple spatial scales," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    4. Rotllan-Puig, Xavier & Traveset, Anna, 2021. "Determining the minimal background area for species distribution models: MinBAR package," Ecological Modelling, Elsevier, vol. 439(C).
    5. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    6. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    7. Giuseppe Antonio Catalano & Provvidenza Rita D’Urso & Federico Maci & Claudia Arcidiacono, 2023. "Influence of Parameters in SDM Application on Citrus Presence in Mediterranean Area," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    8. Hallgren, W. & Santana, F. & Low-Choy, S. & Zhao, Y. & Mackey, B., 2019. "Species distribution models can be highly sensitive to algorithm configuration," Ecological Modelling, Elsevier, vol. 408(C), pages 1-1.
    9. Schratz, Patrick & Muenchow, Jannes & Iturritxa, Eugenia & Richter, Jakob & Brenning, Alexander, 2019. "Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data," Ecological Modelling, Elsevier, vol. 406(C), pages 109-120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alsamadisi, Adam G. & Tran, Liem T. & Papeş, Monica, 2020. "Employing inferences across scales: Integrating spatial data with different resolutions to enhance Maxent models," Ecological Modelling, Elsevier, vol. 415(C).
    2. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    3. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    4. Saupe, E.E. & Barve, V. & Myers, C.E. & Soberón, J. & Barve, N. & Hensz, C.M. & Peterson, A.T. & Owens, H.L. & Lira-Noriega, A., 2012. "Variation in niche and distribution model performance: The need for a priori assessment of key causal factors," Ecological Modelling, Elsevier, vol. 237, pages 11-22.
    5. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    6. Jiménez, Laura & Soberón, Jorge & Christen, J. Andrés & Soto, Desireé, 2019. "On the problem of modeling a fundamental niche from occurrence data," Ecological Modelling, Elsevier, vol. 397(C), pages 74-83.
    7. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    8. Azuaje-Rodríguez, Roxiris A. & Silva, Sofia Marques & Carlos, Caio J., 2022. "Not going with the flow: Ecological niche of a migratory seabird, the South American Tern Sterna hirundinacea," Ecological Modelling, Elsevier, vol. 463(C).
    9. Pelayo Acevedo & Alberto Jiménez-Valverde & Jorge M. Lobo & Raimundo Real, 2017. "Predictor weighting and geographical background delimitation: two synergetic sources of uncertainty when assessing species sensitivity to climate change," Climatic Change, Springer, vol. 145(1), pages 131-143, November.
    10. Watling, James I. & Brandt, Laura A. & Bucklin, David N. & Fujisaki, Ikuko & Mazzotti, Frank J. & Romañach, Stephanie S. & Speroterra, Carolina, 2015. "Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models," Ecological Modelling, Elsevier, vol. 309, pages 48-59.
    11. Whitford, Anna M. & Shipley, Benjamin R. & McGuire, Jenny L., 2024. "The influence of the number and distribution of background points in presence-background species distribution models," Ecological Modelling, Elsevier, vol. 488(C).
    12. Martin Godefroid & Astrid Cruaud & Jean-Pierre Rossi & Jean-Yves Rasplus, 2015. "Assessing the Risk of Invasion by Tephritid Fruit Flies: Intraspecific Divergence Matters," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-19, August.
    13. Boria, Robert A. & Blois, Jessica L., 2018. "The effect of large sample sizes on ecological niche models: Analysis using a North American rodent, Peromyscus maniculatus," Ecological Modelling, Elsevier, vol. 386(C), pages 83-88.
    14. Wolke Tobón-Niedfeldt & Alicia Mastretta-Yanes & Tania Urquiza-Haas & Bárbara Goettsch & Angela P. Cuervo-Robayo & Esmeralda Urquiza-Haas & M. Andrea Orjuela-R & Francisca Acevedo Gasman & Oswaldo Oli, 2022. "Incorporating evolutionary and threat processes into crop wild relatives conservation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Liang, Wanwan & Papeş, Monica & Tran, Liem & Grant, Jerome & Washington-Allen, Robert & Stewart, Scott & Wiggins, Gregory, 2018. "The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift," Ecological Modelling, Elsevier, vol. 388(C), pages 1-9.
    16. Fourcade, Yoan, 2021. "Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara," Ecological Modelling, Elsevier, vol. 457(C).
    17. Steen, Bart & Broennimann, Olivier & Maiorano, Luigi & Guisan, Antoine, 2024. "How sensitive are species distribution models to different background point selection strategies? A test with species at various equilibrium levels," Ecological Modelling, Elsevier, vol. 493(C).
    18. Christian König & Patrick Weigelt & Julian Schrader & Amanda Taylor & Jens Kattge & Holger Kreft, 2019. "Biodiversity data integration—the significance of data resolution and domain," PLOS Biology, Public Library of Science, vol. 17(3), pages 1-16, March.
    19. Barker, Justin R. & MacIsaac, Hugh J., 2022. "Species distribution models: Administrative boundary centroid occurrences require careful interpretation," Ecological Modelling, Elsevier, vol. 472(C).
    20. Marchetto, Elisa & Da Re, Daniele & Tordoni, Enrico & Bazzichetto, Manuele & Zannini, Piero & Celebrin, Simone & Chieffallo, Ludovico & Malavasi, Marco & Rocchini, Duccio, 2023. "Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs," Ecological Modelling, Elsevier, vol. 477(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:363:y:2017:i:c:p:48-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.