IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v491y2024ics0304380024000802.html
   My bibliography  Save this article

Evaluating the skill of correlative species distribution models trained with mechanistic model output

Author

Listed:
  • Horemans, Dante M.L.
  • Friedrichs, Marjorie A.M.
  • St-Laurent, Pierre
  • Hood, Raleigh R.
  • Brown, Christopher W.

Abstract

Predicting the change in the distribution pattern of organisms is critical for assessing and mitigating risks associated with climate change and environmental variability. Correlative species distribution models (SDMs), which relate species’ abundances to environmental data, are particularly useful for generating such predictions as they do not require a priori insight into the complex species’ dynamics. Although correlative SDMs are typically developed using in situ environmental observations, their predictions are commonly created by applying SDMs with environmental information generated by mechanistic models. This can expand the temporal and spatial domain of the projections; however, this may also decrease the SDM prediction skill because of biases associated with the mechanistic model output. We test the hypothesis that training SDMs using environmental mechanistic model output may enhance model prediction skill by compensating for biases in the mechanistic model. We train SDMs for seven estuarine algal taxa observed in the Chesapeake Bay (U.S.A.) using both multi-decadal in situ environmental observations and mechanistic environmental output provided by a 3D coupled hydrodynamic–biogeochemical model. Training the SDMs using mechanistic model output, rather than in situ data, improves the model prediction skill by more than 10%. This demonstrates that although errors in SDM predictions can be caused by using imperfect environmental fields derived from mechanistic models, these errors may be diminished by training SDMs using these same environmental fields.

Suggested Citation

  • Horemans, Dante M.L. & Friedrichs, Marjorie A.M. & St-Laurent, Pierre & Hood, Raleigh R. & Brown, Christopher W., 2024. "Evaluating the skill of correlative species distribution models trained with mechanistic model output," Ecological Modelling, Elsevier, vol. 491(C).
  • Handle: RePEc:eee:ecomod:v:491:y:2024:i:c:s0304380024000802
    DOI: 10.1016/j.ecolmodel.2024.110692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024000802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Melo-Merino, Sara M. & Reyes-Bonilla, Héctor & Lira-Noriega, Andrés, 2020. "Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence," Ecological Modelling, Elsevier, vol. 415(C).
    2. Schartel, Tyler E. & Cao, Yong, 2024. "Background selection complexity influences Maxent predictive performance in freshwater systems," Ecological Modelling, Elsevier, vol. 488(C).
    3. A. Townsend Peterson & Miguel A. Ortega-Huerta & Jeremy Bartley & Victor Sánchez-Cordero & Jorge Soberón & Robert H. Buddemeier & David R. B. Stockwell, 2002. "Future projections for Mexican faunas under global climate change scenarios," Nature, Nature, vol. 416(6881), pages 626-629, April.
    4. Keretz, Shay S. & Woolnough, Daelyn A. & Morris, Todd J. & Roseman, Edward F. & Zanatta, David T., 2024. "Habitat modelling of native freshwater mussels distinguishes river specific differences in the Detroit and St. Clair rivers of the Laurentian Great Lakes," Ecological Modelling, Elsevier, vol. 487(C).
    5. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gobeyn, Sacha & Mouton, Ans M. & Cord, Anna F. & Kaim, Andrea & Volk, Martin & Goethals, Peter L.M., 2019. "Evolutionary algorithms for species distribution modelling: A review in the context of machine learning," Ecological Modelling, Elsevier, vol. 392(C), pages 179-195.
    2. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    3. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    4. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    5. Marmion, Mathieu & Luoto, Miska & Heikkinen, Risto K. & Thuiller, Wilfried, 2009. "The performance of state-of-the-art modelling techniques depends on geographical distribution of species," Ecological Modelling, Elsevier, vol. 220(24), pages 3512-3520.
    6. Kaiping Wang & Weiqi Wang & Niyi Zha & Yue Feng & Chenlan Qiu & Yunlu Zhang & Jia Ma & Rui Zhang, 2022. "Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    7. Sellami, Mohamed Habib & Sifaoui, Mohamed Salah, 2008. "Modelling of heat and mass transfer inside a traditional oasis: Experimental validation," Ecological Modelling, Elsevier, vol. 210(1), pages 144-154.
    8. Steen, Bart & Broennimann, Olivier & Maiorano, Luigi & Guisan, Antoine, 2024. "How sensitive are species distribution models to different background point selection strategies? A test with species at various equilibrium levels," Ecological Modelling, Elsevier, vol. 493(C).
    9. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    10. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    11. Aertsen, Wim & Kint, Vincent & van Orshoven, Jos & Özkan, Kürşad & Muys, Bart, 2010. "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests," Ecological Modelling, Elsevier, vol. 221(8), pages 1119-1130.
    12. Lyndsie S Wszola & Victoria L Simonsen & Erica F Stuber & Caitlyn R Gillespie & Lindsey N Messinger & Karie L Decker & Jeffrey J Lusk & Christopher F Jorgensen & Andrew A Bishop & Joseph J Fontaine, 2017. "Translating statistical species-habitat models to interactive decision support tools," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    13. Basille, Mathieu & Calenge, Clément & Marboutin, Éric & Andersen, Reidar & Gaillard, Jean-Michel, 2008. "Assessing habitat selection using multivariate statistics: Some refinements of the ecological-niche factor analysis," Ecological Modelling, Elsevier, vol. 211(1), pages 233-240.
    14. Rufino, Marta M. & Albouy, Camille & Brind'Amour, Anik, 2021. "Which spatial interpolators I should use? A case study applying to marine species," Ecological Modelling, Elsevier, vol. 449(C).
    15. Mouton, Ans M. & De Baets, Bernard & Van Broekhoven, Ester & Goethals, Peter L.M., 2009. "Prevalence-adjusted optimisation of fuzzy models for species distribution," Ecological Modelling, Elsevier, vol. 220(15), pages 1776-1786.
    16. Olivier, Frédérique & Wotherspoon, Simon J., 2008. "Nest selection by snow petrels Pagodroma nivea in East Antarctica," Ecological Modelling, Elsevier, vol. 210(4), pages 414-430.
    17. Stoklosa, Jakub & Huang, Yih-Huei & Furlan, Elise & Hwang, Wen-Han, 2016. "On quadratic logistic regression models when predictor variables are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 109-121.
    18. Suárez-Seoane, Susana & García de la Morena, Eladio L. & Morales Prieto, Manuel B. & Osborne, Patrick E. & de Juana, Eduardo, 2008. "Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution," Ecological Modelling, Elsevier, vol. 219(1), pages 17-29.
    19. Hopkins, Robert L. & Burr, Brooks M., 2009. "Modeling freshwater fish distributions using multiscale landscape data: A case study of six narrow range endemics," Ecological Modelling, Elsevier, vol. 220(17), pages 2024-2034.
    20. Pie, Marcio R. & Meyer, Andreas L.S. & Firkowski, Carina R. & Ribeiro, Luiz F. & Bornschein, Marcos R., 2013. "Understanding the mechanisms underlying the distribution of microendemic montane frogs (Brachycephalus spp., Terrarana: Brachycephalidae) in the Brazilian Atlantic Rainforest," Ecological Modelling, Elsevier, vol. 250(C), pages 165-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:491:y:2024:i:c:s0304380024000802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.