IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v431y2020ics0304380020302313.html
   My bibliography  Save this article

Integration of landscape metric surfaces derived from vector data improves species distribution models

Author

Listed:
  • Ortner, Olivia
  • Wallentin, Gudrun

Abstract

A species’ distribution across the landscape is not random, but it is affected by distribution, size, abundance and connectivity of landscape patches. This spatial configuration of the landscape shapes ecological processes, for example the location of home ranges, migration routes and migration ability. Landscape metrics describe the configuration of a landscape quantitatively. While traditional approaches in habitat modelling only consider environmental attributes at a specific location, the integration of landscape metrics adds more functional information. In this paper we evaluated a method of directly incorporating a set of landscape metrics as covariates into a Maxent habitat model. Specifically, we used hexagons as statistical units for the calculation of landscape metrics. With this method also landscape metrics calculated with vector data sets can be used for SDM. We tested this approach for the smooth snake (Coronella austriaca) in the Austrian Alps. The experimental designs resulted in an improvement of the habitat models. Moreover, the results demonstrated the benefits of landscape metrics for the model outcomes at different scales.

Suggested Citation

  • Ortner, Olivia & Wallentin, Gudrun, 2020. "Integration of landscape metric surfaces derived from vector data improves species distribution models," Ecological Modelling, Elsevier, vol. 431(C).
  • Handle: RePEc:eee:ecomod:v:431:y:2020:i:c:s0304380020302313
    DOI: 10.1016/j.ecolmodel.2020.109160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020302313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    2. Shcheglovitova, Mariya & Anderson, Robert P., 2013. "Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes," Ecological Modelling, Elsevier, vol. 269(C), pages 9-17.
    3. Anderson, Robert P. & Gonzalez, Israel, 2011. "Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent," Ecological Modelling, Elsevier, vol. 222(15), pages 2796-2811.
    4. Ian W. Renner & David I. Warton, 2013. "Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology," Biometrics, The International Biometric Society, vol. 69(1), pages 274-281, March.
    5. Valerio Amici & Britta Eggers & Francesco Geri & Corrado Battisti, 2015. "Habitat Suitability and Landscape Structure: A Maximum Entropy Approach in a Mediterranean Area," Landscape Research, Taylor & Francis Journals, vol. 40(2), pages 208-225, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haider, Saira M. & Benscoter, Allison M. & Pearlstine, Leonard & D'Acunto, Laura E. & Romañach, Stephanie S., 2021. "Landscape-scale drivers of endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis) presence using an ensemble modeling approach," Ecological Modelling, Elsevier, vol. 461(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holder, Anna M. & Markarian, Arev & Doyle, Jessie M. & Olson, John R., 2020. "Predicting geographic distributions of fishes in remote stream networks using maximum entropy modeling and landscape characterizations," Ecological Modelling, Elsevier, vol. 433(C).
    2. Moreno-Amat, Elena & Mateo, Rubén G. & Nieto-Lugilde, Diego & Morueta-Holme, Naia & Svenning, Jens-Christian & García-Amorena, Ignacio, 2015. "Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data," Ecological Modelling, Elsevier, vol. 312(C), pages 308-317.
    3. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    4. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    5. Christophe Botella & Alexis Joly & Pascal Monestiez & Pierre Bonnet & François Munoz, 2020. "Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
    6. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    7. Schartel, Tyler E. & Cao, Yong, 2024. "Background selection complexity influences Maxent predictive performance in freshwater systems," Ecological Modelling, Elsevier, vol. 488(C).
    8. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    9. Halvorsen, Rune & Mazzoni, Sabrina & Dirksen, John Wirkola & Næsset, Erik & Gobakken, Terje & Ohlson, Mikael, 2016. "How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?," Ecological Modelling, Elsevier, vol. 328(C), pages 108-118.
    10. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    11. Worthington, Thomas A. & Zhang, Tianjiao & Logue, Daniel R. & Mittelstet, Aaron R. & Brewer, Shannon K., 2016. "Landscape and flow metrics affecting the distribution of a federally-threatened fish: Improving management, model fit, and model transferability," Ecological Modelling, Elsevier, vol. 342(C), pages 1-18.
    12. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    13. Cesar A Marchioro, 2016. "Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    14. Ji-Zhong Wan & Chun-Jing Wang & Fei-Hai Yu, 2017. "Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change," Climatic Change, Springer, vol. 144(2), pages 303-316, September.
    15. Boria, Robert A. & Blois, Jessica L., 2018. "The effect of large sample sizes on ecological niche models: Analysis using a North American rodent, Peromyscus maniculatus," Ecological Modelling, Elsevier, vol. 386(C), pages 83-88.
    16. Wolke Tobón-Niedfeldt & Alicia Mastretta-Yanes & Tania Urquiza-Haas & Bárbara Goettsch & Angela P. Cuervo-Robayo & Esmeralda Urquiza-Haas & M. Andrea Orjuela-R & Francisca Acevedo Gasman & Oswaldo Oli, 2022. "Incorporating evolutionary and threat processes into crop wild relatives conservation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. B Eugene Smith & Mark K Johnston & Robert Lücking, 2016. "From GenBank to GBIF: Phylogeny-Based Predictive Niche Modeling Tests Accuracy of Taxonomic Identifications in Large Occurrence Data Repositories," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
    18. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    19. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    20. Fourcade, Yoan, 2021. "Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara," Ecological Modelling, Elsevier, vol. 457(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:431:y:2020:i:c:s0304380020302313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.