IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v447y2021ics0304380021000703.html
   My bibliography  Save this article

Development and validation of a spatially-explicit agent-based model for space utilization by African savanna elephants (Loxodonta africana) based on determinants of movement

Author

Listed:
  • Diaz, Stephanie G.
  • DeAngelis, Donald L.
  • Gaines, Michael S.
  • Purdon, Andrew
  • Mole, Michael A.
  • van Aarde, Rudi J.

Abstract

African elephants (Loxodonta africana) are well-studied and inhabit diverse landscapes that are being transformed by both humans and natural forces. Most tools currently in use are limited in their ability to predict how elephants will respond to novel changes in the environment. Individual-, or agent-based modeling (ABM), may extend current methods in addressing and predicting spatial responses to environmental conditions over time. We developed a spatially explicit agent-based model to simulate elephant space use and validated the model with movement data from elephants in Kruger National Park (KNP) and Chobe National Park (CNP). We simulated movement at an hourly scale, as this scale can reflect switches in elephant behavior due to changes in internal states and short-term responses to the local availability and distribution of critical resources, including forage, water, and shade. Known internal drivers of elephant movement, including perceived temperature and the time since an individual last visited a water source, were linked to the external environment through behavior-based movement rules. Simulations were run on model landscapes representing the wet season and the hot, dry season for both parks. The model outputs, including home range size, daily displacement distance, net displacement distance, and maximum distance traveled from a permanent water source, were evaluated through qualitative and quantitative comparisons to actual elephant movement data from both KNP and CNP. The ABM was successful in reproducing the differences in daily displacements between seasons in each park, and in distances traveled from a permanent water source between parks and seasons. Other movement characteristics, including differences in home range sizes and net daily displacements, were partially reproduced. Out of the all the statistical comparisons made between the empirical and simulated movement patterns, the majority were classified as discrepancies of medium or small effect size. We have shown that a resource-driven model with relatively simple decision rules generates trajectories with movement characteristics that are mostly comparable to those calculated from empirical data. Simulating hourly movement (as our model does) may be useful in predicting how finer-scale patterns of space use, such as those created by foraging movements, are influenced by finer spatio-temporal changes in the environment.

Suggested Citation

  • Diaz, Stephanie G. & DeAngelis, Donald L. & Gaines, Michael S. & Purdon, Andrew & Mole, Michael A. & van Aarde, Rudi J., 2021. "Development and validation of a spatially-explicit agent-based model for space utilization by African savanna elephants (Loxodonta africana) based on determinants of movement," Ecological Modelling, Elsevier, vol. 447(C).
  • Handle: RePEc:eee:ecomod:v:447:y:2021:i:c:s0304380021000703
    DOI: 10.1016/j.ecolmodel.2021.109499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021000703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chloe Bracis & Eliezer Gurarie & Bram Van Moorter & R Andrew Goodwin, 2015. "Memory Effects on Movement Behavior in Animal Foraging," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    2. Guo, Y. & Poulton, G. & Corke, P. & Bishop-Hurley, G.J. & Wark, T. & Swain, D.L., 2009. "Using accelerometer, high sample rate GPS and magnetometer data to develop a cattle movement and behaviour model," Ecological Modelling, Elsevier, vol. 220(17), pages 2068-2075.
    3. Mevin B. Hooten & Devin S. Johnson, 2017. "Basis Function Models for Animal Movement," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 578-589, April.
    4. Volker Grimm & Steven F. Railsback & Christian E. Vincenot & Uta Berger & Cara Gallagher & Donald L. DeAngelis & Bruce Edmonds & Jiaqi Ge & Jarl Giske & Jürgen Groeneveld & Alice S.A. Johnston & Alex, 2020. "The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-7.
    5. Vianey Leos-Barajas & Eric J. Gangloff & Timo Adam & Roland Langrock & Floris M. Beest & Jacob Nabe-Nielsen & Juan M. Morales, 2017. "Multi-scale Modeling of Animal Movement and General Behavior Data Using Hidden Markov Models with Hierarchical Structures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 232-248, September.
    6. Watkins, A. & Noble, J. & Foster, R.J. & Harmsen, B.J. & Doncaster, C.P., 2015. "A spatially explicit agent-based model of the interactions between jaguar populations and their habitats," Ecological Modelling, Elsevier, vol. 306(C), pages 268-277.
    7. Elizabeth Lunstrum, 2014. "Green Militarization: Anti-Poaching Efforts and the Spatial Contours of Kruger National Park," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 104(4), pages 816-832, July.
    8. Robert A R Guldemond & Andrew Purdon & Rudi J van Aarde, 2017. "A systematic review of elephant impact across Africa," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-12, June.
    9. López-Alfaro, Claudia & Estades, Cristián F. & Aldridge, Dennis K. & Gill, Robin M.A., 2012. "Individual-based modeling as a decision tool for the conservation of the endangered huemul deer (Hippocamelus bisulcus) in southern Chile," Ecological Modelling, Elsevier, vol. 244(C), pages 104-116.
    10. Latombe, Guillaume & Parrott, Lael & Fortin, Daniel, 2011. "Levels of emergence in individual based models: Coping with scarcity of data and pattern redundancy," Ecological Modelling, Elsevier, vol. 222(9), pages 1557-1568.
    11. Carter, Neil & Levin, Simon & Barlow, Adam & Grimm, Volker, 2015. "Modeling tiger population and territory dynamics using an agent-based approach," Ecological Modelling, Elsevier, vol. 312(C), pages 347-362.
    12. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    13. Neil, Emily & Madsen, Jens Koed & Carrella, Ernesto & Payette, Nicolas & Bailey, Richard, 2020. "Agent-based modelling as a tool for elephant poaching mitigation," Ecological Modelling, Elsevier, vol. 427(C).
    14. Toby A. Patterson & Alison Parton & Roland Langrock & Paul G. Blackwell & Len Thomas & Ruth King, 2017. "Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 399-438, October.
    15. Christina Semeniuk & Marco Musiani & Danielle J. Marceau, 2011. "Integrating Spatial Behavioral Ecology in Agent-Based Models for Species Conservation," Chapters, in: Adriano Sofo (ed.), Biodiversity, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Buskirk, Amanda N. & Rosenberry, Christopher S. & Wallingford, Bret D. & Domoto, Emily Just & McDill, Marc E. & Drohan, Patrick J. & Diefenbach, Duane R., 2021. "Modeling how to achieve localized areas of reduced white-tailed deer density," Ecological Modelling, Elsevier, vol. 442(C).
    2. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    3. Crouse, Kristin N. & Desai, Nisarg P. & Cassidy, Kira A. & Stahler, Erin E. & Lehman, Clarence L. & Wilson, Michael L., 2022. "Larger territories reduce mortality risk for chimpanzees, wolves, and agents: Multiple lines of evidence in a model validation framework," Ecological Modelling, Elsevier, vol. 471(C).
    4. Zubiria Perez, Alejandra & Bone, Christopher & Stenhouse, Gordon, 2021. "Simulating multi-scale movement decision-making and learning in a large carnivore using agent-based modelling," Ecological Modelling, Elsevier, vol. 452(C).
    5. Rajabi, Mohammadreza & Mansourian, Ali & Pilesjö, Petter & Shirzadi, Mohammad Reza & Fadaei, Reza & Ramazanpour, Javad, 2018. "A spatially explicit agent-based simulation model of a reservoir host of cutaneous leishmaniasis, Rhombomys opimus," Ecological Modelling, Elsevier, vol. 370(C), pages 33-49.
    6. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    7. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    8. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    9. Medeiros-Sousa, Antônio Ralph & Lange, Martin & Mucci, Luis Filipe & Marrelli, Mauro Toledo & Grimm, Volker, 2024. "Modelling the transmission and spread of yellow fever in forest landscapes with different spatial configurations," Ecological Modelling, Elsevier, vol. 489(C).
    10. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    11. Mevin B. Hooten & Ruth King & Roland Langrock, 2017. "Guest Editor’s Introduction to the Special Issue on “Animal Movement Modeling”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 224-231, September.
    12. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    13. Kjær, Lene J. & Schauber, Eric M., 2022. "The effect of landscape, transmission mode and social behavior on disease transmission: Simulating the transmission of chronic wasting disease in white-tailed deer (Odocoileus virginianus) populations," Ecological Modelling, Elsevier, vol. 472(C).
    14. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    15. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    16. Thurner, Stephanie D & Converse, Sarah J & Branch, Trevor A, 2021. "Modeling opportunistic exploitation: increased extinction risk when targeting more than one species," Ecological Modelling, Elsevier, vol. 454(C).
    17. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    18. Sorel, Maeva & Gay, Pierre-Emmanuel & Vernier, Camille & Cissé, Sory & Piou, Cyril, 2024. "Upwind flight partially explains the migratory routes of locust swarms," Ecological Modelling, Elsevier, vol. 489(C).
    19. MacPherson, Brian & Scott, Ryan & Gras, Robin, 2023. "Using individual-based modelling to investigate a pluralistic explanation for the prevalence of sexual reproduction in animal species," Ecological Modelling, Elsevier, vol. 475(C).
    20. Medeiros-Sousa, Antônio Ralph & Laporta, Gabriel Zorello & Mucci, Luis Filipe & Marrelli, Mauro Toledo, 2022. "Epizootic dynamics of yellow fever in forest fragments: An agent-based model to explore the influence of vector and host parameters," Ecological Modelling, Elsevier, vol. 466(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:447:y:2021:i:c:s0304380021000703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.