IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i518p578-589.html
   My bibliography  Save this article

Basis Function Models for Animal Movement

Author

Listed:
  • Mevin B. Hooten
  • Devin S. Johnson

Abstract

Advances in satellite-based data collection techniques have served as a catalyst for new statistical methodology to analyze these data. In wildlife ecological studies, satellite-based data and methodology have provided a wealth of information about animal space use and the investigation of individual-based animal–environment relationships. With the technology for data collection improving dramatically over time, we are left with massive archives of historical animal telemetry data of varying quality. While many contemporary statistical approaches for inferring movement behavior are specified in discrete time, we develop a flexible continuous-time stochastic integral equation framework that is amenable to reduced-rank second-order covariance parameterizations. We demonstrate how the associated first-order basis functions can be constructed to mimic behavioral characteristics in realistic trajectory processes using telemetry data from mule deer and mountain lion individuals in western North America. Our approach is parallelizable and provides inference for heterogenous trajectories using nonstationary spatial modeling techniques that are feasible for large telemetry datasets. Supplementary materials for this article are available online.

Suggested Citation

  • Mevin B. Hooten & Devin S. Johnson, 2017. "Basis Function Models for Animal Movement," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 578-589, April.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:578-589
    DOI: 10.1080/01621459.2016.1246250
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1246250
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1246250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diaz, Stephanie G. & DeAngelis, Donald L. & Gaines, Michael S. & Purdon, Andrew & Mole, Michael A. & van Aarde, Rudi J., 2021. "Development and validation of a spatially-explicit agent-based model for space utilization by African savanna elephants (Loxodonta africana) based on determinants of movement," Ecological Modelling, Elsevier, vol. 447(C).
    2. Ephraim M. Hanks & Devin S. Johnson & Mevin B. Hooten, 2017. "Reflected Stochastic Differential Equation Models for Constrained Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 353-372, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:578-589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.