IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v466y2022ics0304380022000060.html
   My bibliography  Save this article

Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰

Author

Listed:
  • Watson, Joseph W
  • Boyd, Robin
  • Dutta, Ritabrata
  • Vasdekis, Georgios
  • Walker, Nicola D.
  • Roy, Shovonlal
  • Everitt, Richard
  • Hyder, Kieran
  • Sibly, Richard M

Abstract

The northern stock of European sea bass (Dicentrarchus labrax) is a large, high value, slow growing and late maturing fish that is an important target species for both commercial and recreational fisheries. Around the UK, scientific assessments have shown a rapid eight-year decline in spawning stock biomass since 2010 attributed to poor recruitment; this was likely driven by environmental factors and high fishing mortality. Management of the stock is informed by scientific assessments in which a population model is fitted to the available data and used to forecast the possible consequences of various catch options. However, the model currently used cannot represent the spatial distribution of the stock or any effects of environmental variability. One approach that may be used to represent the effects of spatial and temporal variation in environmental drivers is with Individual based models (IBMs). In IBMs populations are represented by their constituent individuals that interact with their environment and each other. The mechanistic nature of IBMs is often advantageous as a management tool for complex systems including fisheries. Here we add to an existing IBM to produce a spatio-temporally explicit IBM of the northern stock of sea bass in which individual fish respond to local food supply and sea surface temperature. All life stages (i.e., pelagic stages, juvenile and mature fish) are modelled and individual fish have their own realistic energy budgets driven by observed dynamic maps of phytoplankton density and sea surface temperature. The model is calibrated using Approximate Bayesian Computation (ABC). After calibration by ABC the model gives good fits to key population parameters including spawning stock biomass. The model provides a mechanistic link between observed local food supplies and sea surface temperatures and overall population dynamics. Plots of spatial biomass distribution show how the model uses the energy budget to predict spatial and temporal change in sea bass biomass distribution in response to environmental variability. Our results indicate that the IBM is a promising approach that could be used to support stock assessment with scope for testing a range of spatially and temporally explicit management scenarios in addition to testing stock responses to novel environmental change.

Suggested Citation

  • Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
  • Handle: RePEc:eee:ecomod:v:466:y:2022:i:c:s0304380022000060
    DOI: 10.1016/j.ecolmodel.2022.109878
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022000060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.109878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nabe-Nielsen, Jacob & Sibly, Richard M. & Tougaard, Jakob & Teilmann, Jonas & Sveegaard, Signe, 2014. "Effects of noise and by-catch on a Danish harbour porpoise population," Ecological Modelling, Elsevier, vol. 272(C), pages 242-251.
    2. Grimm, Volker & Augusiak, Jacqueline & Focks, Andreas & Frank, Béatrice M. & Gabsi, Faten & Johnston, Alice S.A. & Liu, Chun & Martin, Benjamin T. & Meli, Mattia & Radchuk, Viktoriia & Thorbek, Pernil, 2014. "Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE," Ecological Modelling, Elsevier, vol. 280(C), pages 129-139.
    3. van der Vaart, Elske & Beaumont, Mark A. & Johnston, Alice S.A. & Sibly, Richard M., 2015. "Calibration and evaluation of individual-based models using Approximate Bayesian Computation," Ecological Modelling, Elsevier, vol. 312(C), pages 182-190.
    4. Volker Grimm & Steven F. Railsback & Christian E. Vincenot & Uta Berger & Cara Gallagher & Donald L. DeAngelis & Bruce Edmonds & Jiaqi Ge & Jarl Giske & Jürgen Groeneveld & Alice S.A. Johnston & Alex, 2020. "The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-7.
    5. Heinänen, Stefan & Chudzinska, Magda Ewa & Brandi Mortensen, Jonas & Teo, Theophilus Zhi En & Rong Utne, Kjell & Doksæter Sivle, Lise & Thomsen, Frank, 2018. "Integrated modelling of Atlantic mackerel distribution patterns and movements: A template for dynamic impact assessments," Ecological Modelling, Elsevier, vol. 387(C), pages 118-133.
    6. Boult, Victoria L. & Quaife, Tristan & Fishlock, Vicki & Moss, Cynthia J. & Lee, Phyllis C. & Sibly, Richard M., 2018. "Individual-based modelling of elephant population dynamics using remote sensing to estimate food availability," Ecological Modelling, Elsevier, vol. 387(C), pages 187-195.
    7. Nigel C. Sainsbury & Martin J. Genner & Geoffrey R. Saville & John K. Pinnegar & Clare K. O’Neill & Stephen D. Simpson & Rachel A. Turner, 2018. "Changing storminess and global capture fisheries," Nature Climate Change, Nature, vol. 8(8), pages 655-659, August.
    8. Augusiak, Jacqueline & Van den Brink, Paul J. & Grimm, Volker, 2014. "Merging validation and evaluation of ecological models to ‘evaludation’: A review of terminology and a practical approach," Ecological Modelling, Elsevier, vol. 280(C), pages 117-128.
    9. Watkins, Katherine Shepard & Rose, Kenneth A., 2017. "Simulating individual-based movement in dynamic environments," Ecological Modelling, Elsevier, vol. 356(C), pages 59-72.
    10. Politikos, Dimitrios V. & Huret, Martin & Petitgas, Pierre, 2015. "A coupled movement and bioenergetics model to explore the spawning migration of anchovy in the Bay of Biscay," Ecological Modelling, Elsevier, vol. 313(C), pages 212-222.
    11. Walker, Nicola D. & Boyd, Robin & Watson, Joseph & Kotz, Max & Radford, Zachary & Readdy, Lisa & Sibly, Richard & Roy, Shovonlal & Hyder, Kieran, 2020. "A spatially explicit individual-based model to support management of commercial and recreational fisheries for European sea bass Dicentrarchus labrax," Ecological Modelling, Elsevier, vol. 431(C).
    12. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chidiebere Ofoegbu & Heiko Balzter & Martin Phillips, 2023. "Evidence Synthesis towards a Holistic Landscape Decision Framework: Insight from the Landscape Decisions Programme," Land, MDPI, vol. 12(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walker, Nicola D. & Boyd, Robin & Watson, Joseph & Kotz, Max & Radford, Zachary & Readdy, Lisa & Sibly, Richard & Roy, Shovonlal & Hyder, Kieran, 2020. "A spatially explicit individual-based model to support management of commercial and recreational fisheries for European sea bass Dicentrarchus labrax," Ecological Modelling, Elsevier, vol. 431(C).
    2. Boyd, Robin & Roy, Shovonlal & Sibly, Richard & Thorpe, Robert & Hyder, Kieran, 2018. "A general approach to incorporating spatial and temporal variation in individual-based models of fish populations with application to Atlantic mackerel," Ecological Modelling, Elsevier, vol. 382(C), pages 9-17.
    3. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    4. Cartwright, Samantha J. & Bowgen, Katharine M. & Collop, Catherine & Hyder, Kieran & Nabe-Nielsen, Jacob & Stafford, Richard & Stillman, Richard A. & Thorpe, Robert B. & Sibly, Richard M., 2016. "Communicating complex ecological models to non-scientist end users," Ecological Modelling, Elsevier, vol. 338(C), pages 51-59.
    5. Boult, Victoria L. & Quaife, Tristan & Fishlock, Vicki & Moss, Cynthia J. & Lee, Phyllis C. & Sibly, Richard M., 2018. "Individual-based modelling of elephant population dynamics using remote sensing to estimate food availability," Ecological Modelling, Elsevier, vol. 387(C), pages 187-195.
    6. Crouse, Kristin N. & Desai, Nisarg P. & Cassidy, Kira A. & Stahler, Erin E. & Lehman, Clarence L. & Wilson, Michael L., 2022. "Larger territories reduce mortality risk for chimpanzees, wolves, and agents: Multiple lines of evidence in a model validation framework," Ecological Modelling, Elsevier, vol. 471(C).
    7. Chudzinska, Magda & Nabe-Nielsen, Jacob & Smout, Sophie & Aarts, Geert & Brasseur, Sophie & Graham, Isla & Thompson, Paul & McConnell, Bernie, 2021. "AgentSeal: Agent-based model describing movement of marine central-place foragers," Ecological Modelling, Elsevier, vol. 440(C).
    8. An, Li & Grimm, Volker & Sullivan, Abigail & Turner II, B.L. & Malleson, Nicolas & Heppenstall, Alison & Vincenot, Christian & Robinson, Derek & Ye, Xinyue & Liu, Jianguo & Lindkvist, Emilie & Tang, W, 2021. "Challenges, tasks, and opportunities in modeling agent-based complex systems," Ecological Modelling, Elsevier, vol. 457(C).
    9. Lapp, Maya & Long, Colby, 2022. "A new approach to agent-based models of Community Resource Management based on the analysis of cheating, monitoring, and sanctioning," Ecological Modelling, Elsevier, vol. 468(C).
    10. Planque, Benjamin & Aarflot, Johanna M. & Buttay, Lucie & Carroll, JoLynn & Fransner, Filippa & Hansen, Cecilie & Husson, Bérengère & Langangen, Øystein & Lindstrøm, Ulf & Pedersen, Torstein & Primice, 2022. "A standard protocol for describing the evaluation of ecological models," Ecological Modelling, Elsevier, vol. 471(C).
    11. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    12. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    13. Ayllón, Daniel & Railsback, Steven F. & Vincenzi, Simone & Groeneveld, Jürgen & Almodóvar, Ana & Grimm, Volker, 2016. "InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change," Ecological Modelling, Elsevier, vol. 326(C), pages 36-53.
    14. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    15. King, Elizabeth G. & Franz, Trenton E., 2016. "Combining ecohydrologic and transition probability-based modeling to simulate vegetation dynamics in a semi-arid rangeland," Ecological Modelling, Elsevier, vol. 329(C), pages 41-63.
    16. Courbaud, B. & Lafond, V. & Lagarrigues, G. & Vieilledent, G. & Cordonnier, T. & Jabot, F. & de Coligny, F., 2015. "Applying ecological model evaludation: Lessons learned with the forest dynamics model Samsara2," Ecological Modelling, Elsevier, vol. 314(C), pages 1-14.
    17. de Jager, Monique & Hengeveld, Geerten M. & Mooij, Wolf M. & Slooten, Elisabeth, 2019. "Modelling the spatial dynamics of Maui dolphins using individual-based models," Ecological Modelling, Elsevier, vol. 402(C), pages 59-65.
    18. Schmolke, Amelie & Bartell, Steven M. & Roy, Colleen & Green, Nicholas & Galic, Nika & Brain, Richard, 2019. "Species-specific population dynamics and their link to an aquatic food web: A hybrid modeling approach," Ecological Modelling, Elsevier, vol. 405(C), pages 1-14.
    19. Liukkonen, Lauri & Ayllón, Daniel & Kunnasranta, Mervi & Niemi, Marja & Nabe-Nielsen, Jacob & Grimm, Volker & Nyman, Anna-Maija, 2018. "Modelling movements of Saimaa ringed seals using an individual-based approach," Ecological Modelling, Elsevier, vol. 368(C), pages 321-335.
    20. Dick, D.D.C. & Ayllón, D., 2017. "FloMan-MF: Floodplain Management for the Moor Frog − a simulation model for amphibian conservation in dynamic wetlands," Ecological Modelling, Elsevier, vol. 348(C), pages 110-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:466:y:2022:i:c:s0304380022000060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.