IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v306y2015icp268-277.html
   My bibliography  Save this article

A spatially explicit agent-based model of the interactions between jaguar populations and their habitats

Author

Listed:
  • Watkins, A.
  • Noble, J.
  • Foster, R.J.
  • Harmsen, B.J.
  • Doncaster, C.P.

Abstract

Agent-based models can predict system-level properties of populations from stochastic simulation of fine-scale movements. One important application to conservation lies in their ability to consider the impact of individual variation in movement and decision-making on populations under future landscape changes. Here, we present a spatially explicit agent-based simulation of a population of jaguars (Panthera onca) in a mixed forest and farmland landscape in Central America that demonstrates an application of least-cost modelling, a description of the way that agents move through their environment, to equilibrium population dynamics. We detail the construction and application of the model, and the processes of calibration, sensitivity analysis and validation with empirical field data. Simulated jaguars underwent feeding, reproduction, and mortality events typical of natural populations, resulting in realistic population dynamics and home range sizes. Jaguar agents located inside protected forest reserves exhibited higher fitness (fecundity, energy reserves, age and age of mortality) as well as lower energy- and habitat-related mortality than jaguar agents located outside these reserves. Changes in fecundity directly affected the dynamics of simulated populations to a larger degree than either mortality or agent–agent interactions. Model validation showed similar patterns to camera traps in the field, in terms of landscape utilisation and the spatial distribution of individuals. The model showed less sensitivity to socially motivated and fine-scale movements, apart from those directed towards feeding and reproduction, but reflected the interactions and movement of naturally occurring populations in this region. Applications of the model will include testing impacts on population dynamics of likely future changes in landscape structure and connectivity.

Suggested Citation

  • Watkins, A. & Noble, J. & Foster, R.J. & Harmsen, B.J. & Doncaster, C.P., 2015. "A spatially explicit agent-based model of the interactions between jaguar populations and their habitats," Ecological Modelling, Elsevier, vol. 306(C), pages 268-277.
  • Handle: RePEc:eee:ecomod:v:306:y:2015:i:c:p:268-277
    DOI: 10.1016/j.ecolmodel.2014.10.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014005560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.10.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajabi, Mohammadreza & Mansourian, Ali & Pilesjö, Petter & Shirzadi, Mohammad Reza & Fadaei, Reza & Ramazanpour, Javad, 2018. "A spatially explicit agent-based simulation model of a reservoir host of cutaneous leishmaniasis, Rhombomys opimus," Ecological Modelling, Elsevier, vol. 370(C), pages 33-49.
    2. Zubiria Perez, Alejandra & Bone, Christopher & Stenhouse, Gordon, 2021. "Simulating multi-scale movement decision-making and learning in a large carnivore using agent-based modelling," Ecological Modelling, Elsevier, vol. 452(C).
    3. Diaz, Stephanie G. & DeAngelis, Donald L. & Gaines, Michael S. & Purdon, Andrew & Mole, Michael A. & van Aarde, Rudi J., 2021. "Development and validation of a spatially-explicit agent-based model for space utilization by African savanna elephants (Loxodonta africana) based on determinants of movement," Ecological Modelling, Elsevier, vol. 447(C).
    4. Van Buskirk, Amanda N. & Rosenberry, Christopher S. & Wallingford, Bret D. & Domoto, Emily Just & McDill, Marc E. & Drohan, Patrick J. & Diefenbach, Duane R., 2021. "Modeling how to achieve localized areas of reduced white-tailed deer density," Ecological Modelling, Elsevier, vol. 442(C).
    5. He, Haosen & Buchholtz, Erin & Chen, Frederick & Vogel, Susanne & Yu, Chu A.(Alex), 2022. "An agent-based model of elephant crop consumption walks using combinatorial optimization," Ecological Modelling, Elsevier, vol. 464(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca Fabiani & Nikolaos Evangelou & Tianqi Cui & Juan M. Bello-Rivas & Cristina P. Martin-Linares & Constantinos Siettos & Ioannis G. Kevrekidis, 2024. "Task-oriented machine learning surrogates for tipping points of agent-based models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    3. Yun Eui Choi & Kihwan Song & Min Kim & Junga Lee, 2017. "Transformation Planning for Resilient Wildlife Habitats in Ecotourism Systems," Sustainability, MDPI, vol. 9(4), pages 1-28, March.
    4. Katherine A. Zeller & David W. Wattles & Javan M. Bauder & Stephen DeStefano, 2020. "Forecasting Seasonal Habitat Connectivity in a Developing Landscape," Land, MDPI, vol. 9(7), pages 1-20, July.
    5. MacPherson, Brian & Gras, Robin, 2016. "Individual-based ecological models: Adjunctive tools or experimental systems?," Ecological Modelling, Elsevier, vol. 323(C), pages 106-114.
    6. Hatlauf, J. & Kunz, F. & Griesberger, P. & Sachser, F. & Hackländer, K., 2024. "A stage-based life cycle implementation for individual-based population viability analyses of grey wolves (Canis lupus) in Europe," Ecological Modelling, Elsevier, vol. 491(C).
    7. Ringelman, Kevin M., 2014. "Predator foraging behavior and patterns of avian nest success: What can we learn from an agent-based model?," Ecological Modelling, Elsevier, vol. 272(C), pages 141-149.
    8. Boyd, Robin & Roy, Shovonlal & Sibly, Richard & Thorpe, Robert & Hyder, Kieran, 2018. "A general approach to incorporating spatial and temporal variation in individual-based models of fish populations with application to Atlantic mackerel," Ecological Modelling, Elsevier, vol. 382(C), pages 9-17.
    9. Mamboleo, Abel Ansporthy & Doscher, Crile & Paterson, Adrian, 2021. "A computational modelling approach to human-elephant interactions in the Bunda District, Tanzania," Ecological Modelling, Elsevier, vol. 443(C).
    10. Kevin E Jablonski & Randall B Boone & Paul J Meiman, 2018. "An agent-based model of cattle grazing toxic Geyer's larkspur," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-22, March.
    11. He, Haosen & Buchholtz, Erin & Chen, Frederick & Vogel, Susanne & Yu, Chu A.(Alex), 2022. "An agent-based model of elephant crop consumption walks using combinatorial optimization," Ecological Modelling, Elsevier, vol. 464(C).
    12. Silvia, Chris & Krause, Rachel M., 2016. "Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: An agent-based model," Energy Policy, Elsevier, vol. 96(C), pages 105-118.
    13. Salau, Kehinde & Schoon, Michael L. & Baggio, Jacopo A. & Janssen, Marco A., 2012. "Varying effects of connectivity and dispersal on interacting species dynamics," Ecological Modelling, Elsevier, vol. 242(C), pages 81-91.
    14. Pirotta, Enrico & New, Leslie & Harwood, John & Lusseau, David, 2014. "Activities, motivations and disturbance: An agent-based model of bottlenose dolphin behavioral dynamics and interactions with tourism in Doubtful Sound, New Zealand," Ecological Modelling, Elsevier, vol. 282(C), pages 44-58.
    15. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Tomback, Diana F. & Lorenz, Teresa & Marceau, Danielle, 2017. "Energetic behavioural-strategy prioritization of Clark’s nutcrackers in whitebark pine communities: An agent-based modeling approach," Ecological Modelling, Elsevier, vol. 354(C), pages 123-139.
    16. Semeniuk, C.A.D. & Musiani, M. & Hebblewhite, M. & Grindal, S. & Marceau, D.J., 2012. "Incorporating behavioral–ecological strategies in pattern-oriented modeling of caribou habitat use in a highly industrialized landscape," Ecological Modelling, Elsevier, vol. 243(C), pages 18-32.
    17. Guillem, E.E. & Murray-Rust, D. & Robinson, D.T. & Barnes, A. & Rounsevell, M.D.A., 2015. "Modelling farmer decision-making to anticipate tradeoffs between provisioning ecosystem services and biodiversity," Agricultural Systems, Elsevier, vol. 137(C), pages 12-23.
    18. Benson, Thomas & de Bie, Jasper & Gaskell, Jennifer & Vezza, Paolo & Kerr, James R. & Lumbroso, Darren & Owen, Markus R. & Kemp, Paul S., 2021. "Agent-based modelling of juvenile eel migration via selective tidal stream transport," Ecological Modelling, Elsevier, vol. 443(C).
    19. Nathan, Lucas R. & Mamoozadeh, Nadya & Tumas, Hayley R. & Gunselman, Samuel & Klass, Keren & Metcalfe, Anya & Edge, Chris & Waits, Lisette P. & Spruell, Paul & Lowery, Erin & Connor, Ed & Bearlin, And, 2019. "A spatially-explicit, individual-based demogenetic simulation framework for evaluating hybridization dynamics," Ecological Modelling, Elsevier, vol. 401(C), pages 40-51.
    20. Casey C Day & Nicholas P McCann & Patrick A Zollner & Jonathan H Gilbert & David M MacFarland, 2019. "Temporal plasticity in habitat selection criteria explains patterns of animal dispersal," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(2), pages 528-540.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:306:y:2015:i:c:p:268-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.