IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v144y2017i2d10.1007_s10584-017-2044-7.html
   My bibliography  Save this article

Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change

Author

Listed:
  • Ji-Zhong Wan

    (Taizhou University
    Beijing Forestry University)

  • Chun-Jing Wang

    (Beijing Forestry University)

  • Fei-Hai Yu

    (Taizhou University
    Beijing Forestry University)

Abstract

Climate change is likely to threaten forests in future. Because dominant tree species (DTS) play central roles in stabilizing forest ecosystems, to effectively protect forests, we need to pay more attention to the protection of DTS. Furthermore, we need to integrate potential impacts of climate change into conservation efforts of DTS for improving forest protection. We utilized species distribution modeling, coupled with conservation planning, to establish climate-informed conservation prioritization for 136 taxa of DTS in three forest types (broad-leaved forests, mixed broadleaf-conifer forests, and coniferous forests) in China. We considered both current and future distributions and assessed the ability of existing nature reserves in China to protect forests based on these DTS. Regions with the highest climate-informed conservation prioritization were distributed in the southern, southwestern, and northeastern regions of China. There was a small gap between existing nature reserves and predicted conservation prioritization areas for conserving forests: the proportions of overlap between existing reserves and areas prioritized under climate change scenarios were 87.8, 95.7, and 80.4% for broad-leaved forests, mixed broadleaf-conifer forests, and coniferous forests, respectively. Even so, we need to increase the number and/or area of nature reserves to protect coniferous forests in Tibet, Sichuan, and Yunnan, and broad-leaved forests in Guizhou, Guangxi, Hu’nan, Yunnan, and Sichuan. Our results demonstrate the importance of conservation planning under climate change, taking both current and future distributions of plant species into consideration. Nature reserves should develop different management strategies for different forest types.

Suggested Citation

  • Ji-Zhong Wan & Chun-Jing Wang & Fei-Hai Yu, 2017. "Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change," Climatic Change, Springer, vol. 144(2), pages 303-316, September.
  • Handle: RePEc:spr:climat:v:144:y:2017:i:2:d:10.1007_s10584-017-2044-7
    DOI: 10.1007/s10584-017-2044-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2044-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2044-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    2. Marc Hanewinkel & Dominik A. Cullmann & Mart-Jan Schelhaas & Gert-Jan Nabuurs & Niklaus E. Zimmermann, 2013. "Climate change may cause severe loss in the economic value of European forest land," Nature Climate Change, Nature, vol. 3(3), pages 203-207, March.
    3. Azaiez Ouled Belgacem & Mounir Louhaichi, 2013. "The vulnerability of native rangeland plant species to global climate change in the West Asia and North African regions," Climatic Change, Springer, vol. 119(2), pages 451-463, July.
    4. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    5. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    6. C. R. Margules & R. L. Pressey, 2000. "Systematic conservation planning," Nature, Nature, vol. 405(6783), pages 243-253, May.
    7. Oke, Oluwatobi A. & Thompson, Ken A., 2015. "Distribution models for mountain plant species: The value of elevation," Ecological Modelling, Elsevier, vol. 301(C), pages 72-77.
    8. Ian W. Renner & David I. Warton, 2013. "Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology," Biometrics, The International Biometric Society, vol. 69(1), pages 274-281, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Víctor Rincón & Javier Velázquez & Derya Gülçin & Aida López-Sánchez & Carlos Jiménez & Ali Uğur Özcan & Juan Carlos López-Almansa & Tomás Santamaría & Daniel Sánchez-Mata & Kerim Çiçek, 2023. "Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change," Land, MDPI, vol. 12(2), pages 1-39, January.
    2. Xueliang Zheng & Lihua Chen & Wenyan Gong & Xia Yang & Yingli Kang, 2019. "Evaluation of the Water Conservation Function of Different Forest Types in Northeastern China," Sustainability, MDPI, vol. 11(15), pages 1-13, July.
    3. Ali Uğur Özcan & Javier Velázquez & Víctor Rincón & Derya Gülçin & Kerim Çiçek, 2022. "Assessment of the Morphological Pattern of the Lebanon Cedar under Changing Climate: The Mediterranean Case," Land, MDPI, vol. 11(6), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    2. Dana H. Mills & Michael L. McKinney, 2024. "Climate Change and Jump Dispersal Drive Invasion of the Rosy Wolfsnail ( Euglandina rosea ) in the United States," Sustainability, MDPI, vol. 16(5), pages 1-14, February.
    3. Disha Sachan & Pankaj Kumar & Md. Saquib Saharwardi, 2022. "Contemporary climate change velocity for near-surface temperatures over India," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    4. Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    5. Gaglio, M. & Aschonitis, V. & Pieretti, L. & Santos, L. & Gissi, E. & Castaldelli, G. & Fano, E.A., 2019. "Modelling past, present and future Ecosystem Services supply in a protected floodplain under land use and climate changes," Ecological Modelling, Elsevier, vol. 403(C), pages 23-34.
    6. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    7. Erica Honeck & Atte Moilanen & Benjamin Guinaudeau & Nicolas Wyler & Martin A. Schlaepfer & Pascal Martin & Arthur Sanguet & Loreto Urbina & Bertrand von Arx & Joëlle Massy & Claude Fischer & Anthony , 2020. "Implementing Green Infrastructure for the Spatial Planning of Peri-Urban Areas in Geneva, Switzerland," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    8. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    9. Huirong Yu, 2022. "A multi-scale approach to mapping conservation priorities for rural China based on landscape context," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10803-10828, September.
    10. Katherine Dagon & Daniel P. Schrag, 2019. "Quantifying the effects of solar geoengineering on vegetation," Climatic Change, Springer, vol. 153(1), pages 235-251, March.
    11. Mariane Paulina Batalha Roque & José Ambrósio Ferreira Neto & André Luiz Lopes Faria, 2022. "Degraded grassland and the conflict of land use in protected areas of hotspot in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1475-1492, January.
    12. Boyd, James & Epanchin-Niell, Rebecca & Siikamaki, Juha, 2012. "Conservation Return on Investment Analysis: A Review of Results, Methods, and New Directions," RFF Working Paper Series dp-12-01, Resources for the Future.
    13. Dissanayake, Sahan T.M. & Önal, Hayri & Westervelt, James D. & Balbach, Harold E., 2012. "Incorporating species relocation in reserve design models: An example from Ft. Benning GA," Ecological Modelling, Elsevier, vol. 224(1), pages 65-75.
    14. Lissa M Barr & Robert L Pressey & Richard A Fuller & Daniel B Segan & Eve McDonald-Madden & Hugh P Possingham, 2011. "A New Way to Measure the World's Protected Area Coverage," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-4, September.
    15. Conceição, Eliezer O. & Garcia, Jéssica Magon & Alves, Gustavo Henrique Zaia & Delanira-Santos, Driele & Corbetta, Daiany de Fátima & Betiol, Tânia Camila Crivelari & Pacifico, Ricardo & Romagnolo, Ma, 2022. "The impact of downsizing protected areas: How a misguided policy may enhance landscape fragmentation and biodiversity loss," Land Use Policy, Elsevier, vol. 112(C).
    16. White, Ben & Sadler, Rohan, 2012. "Optimal conservation investment for a biodiversity-rich agricultural landscape," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(1), pages 1-21, March.
    17. Ricardo A. Correia & Miguel N. Bugalho & Aldina M. A. Franco & Jorge M. Palmeirim, 2018. "Contribution of spatially explicit models to climate change adaptation and mitigation plans for a priority forest habitat," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 371-386, March.
    18. Armsworth, Paul R. & Kendall, Bruce E. & Davis, Frank W., 2004. "An introduction to biodiversity concepts for environmental economists," Resource and Energy Economics, Elsevier, vol. 26(2), pages 115-136, June.
    19. John A. Gallo & Amanda T. Lombard & Richard M. Cowling, 2022. "Conservation Planning for Action: End-User Engagement in the Development and Dual-Centric Weighting of a Spatial Decision Support System," Land, MDPI, vol. 12(1), pages 1-14, December.
    20. Christophe Botella & Alexis Joly & Pascal Monestiez & Pierre Bonnet & François Munoz, 2020. "Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:144:y:2017:i:2:d:10.1007_s10584-017-2044-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.