IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v386y2018icp83-88.html
   My bibliography  Save this article

The effect of large sample sizes on ecological niche models: Analysis using a North American rodent, Peromyscus maniculatus

Author

Listed:
  • Boria, Robert A.
  • Blois, Jessica L.

Abstract

Correlative ecological niche models (ENMs) aim to approximate the environmentally suitable areas for a species. Recently, studies have explored the minimum number of occurrence records needed to implement ENMs; however, cosmopolitan species with many occurrence records have their own challenges and the effects of larger sample sizes on ENM performance have yet to be determined. To address this issue, we focused on a New World rodent, Peromyscus maniculatus. We obtained locality data from GBIF (13,199 unique records), and spatially filtered the localities. We then modeled suitable area for the species using Maxent, two different environmental datasets (at different spatial resolutions) and different numbers of occurrence records (with 25 replicates per sample size). We evaluated the models with k-fold cross-validation, AUC, and two omission rates. Further, we calculated the variability among predictions within and between datasets to indicate variation in geography. Generally, the AUC and omission rate both decreased as sample size increased. Lastly, as sample size increased, similarities in geography increased within and between datasets. For P. maniculatus, we get similar performing models, both in terms of geographic predictions and evaluation statistics, with as few as 10%–20% of the maximum number of localities for each environmental dataset. Using a large number of occurrence records may not be necessary for ENMs, and in fact may hinder model performance.

Suggested Citation

  • Boria, Robert A. & Blois, Jessica L., 2018. "The effect of large sample sizes on ecological niche models: Analysis using a North American rodent, Peromyscus maniculatus," Ecological Modelling, Elsevier, vol. 386(C), pages 83-88.
  • Handle: RePEc:eee:ecomod:v:386:y:2018:i:c:p:83-88
    DOI: 10.1016/j.ecolmodel.2018.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    2. Shcheglovitova, Mariya & Anderson, Robert P., 2013. "Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes," Ecological Modelling, Elsevier, vol. 269(C), pages 9-17.
    3. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    4. VanDerWal, Jeremy & Shoo, Luke P. & Graham, Catherine & Williams, Stephen E., 2009. "Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?," Ecological Modelling, Elsevier, vol. 220(4), pages 589-594.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cervelli, Elena & Recchi, Pier Francesco & Fagnano, Massimo & Scotto di Perta, Ester & Pindozzi, Stefania, 2024. "Marginal lands between recovery and valorization. An inclusive definition to support bio-energy supply chains. The Southern Italy contexts case study," Agricultural Systems, Elsevier, vol. 217(C).
    2. Barker, Justin R. & MacIsaac, Hugh J., 2022. "Species distribution models: Administrative boundary centroid occurrences require careful interpretation," Ecological Modelling, Elsevier, vol. 472(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    2. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    3. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    4. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    5. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    6. Cesar A Marchioro, 2016. "Global Potential Distribution of Bactrocera carambolae and the Risks for Fruit Production in Brazil," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    7. Alsamadisi, Adam G. & Tran, Liem T. & Papeş, Monica, 2020. "Employing inferences across scales: Integrating spatial data with different resolutions to enhance Maxent models," Ecological Modelling, Elsevier, vol. 415(C).
    8. Fourcade, Yoan, 2021. "Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara," Ecological Modelling, Elsevier, vol. 457(C).
    9. Schartel, Tyler E. & Cao, Yong, 2024. "Background selection complexity influences Maxent predictive performance in freshwater systems," Ecological Modelling, Elsevier, vol. 488(C).
    10. Saupe, E.E. & Barve, V. & Myers, C.E. & Soberón, J. & Barve, N. & Hensz, C.M. & Peterson, A.T. & Owens, H.L. & Lira-Noriega, A., 2012. "Variation in niche and distribution model performance: The need for a priori assessment of key causal factors," Ecological Modelling, Elsevier, vol. 237, pages 11-22.
    11. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    12. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    13. Jiménez, Laura & Soberón, Jorge & Christen, J. Andrés & Soto, Desireé, 2019. "On the problem of modeling a fundamental niche from occurrence data," Ecological Modelling, Elsevier, vol. 397(C), pages 74-83.
    14. Boria, Robert A. & Olson, Link E. & Goodman, Steven M. & Anderson, Robert P., 2014. "Spatial filtering to reduce sampling bias can improve the performance of ecological niche models," Ecological Modelling, Elsevier, vol. 275(C), pages 73-77.
    15. Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
    16. Azuaje-Rodríguez, Roxiris A. & Silva, Sofia Marques & Carlos, Caio J., 2022. "Not going with the flow: Ecological niche of a migratory seabird, the South American Tern Sterna hirundinacea," Ecological Modelling, Elsevier, vol. 463(C).
    17. Ortner, Olivia & Wallentin, Gudrun, 2020. "Integration of landscape metric surfaces derived from vector data improves species distribution models," Ecological Modelling, Elsevier, vol. 431(C).
    18. Pelayo Acevedo & Alberto Jiménez-Valverde & Jorge M. Lobo & Raimundo Real, 2017. "Predictor weighting and geographical background delimitation: two synergetic sources of uncertainty when assessing species sensitivity to climate change," Climatic Change, Springer, vol. 145(1), pages 131-143, November.
    19. Watling, James I. & Brandt, Laura A. & Bucklin, David N. & Fujisaki, Ikuko & Mazzotti, Frank J. & Romañach, Stephanie S. & Speroterra, Carolina, 2015. "Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models," Ecological Modelling, Elsevier, vol. 309, pages 48-59.
    20. Melo-Merino, Sara M. & Reyes-Bonilla, Héctor & Lira-Noriega, Andrés, 2020. "Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence," Ecological Modelling, Elsevier, vol. 415(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:386:y:2018:i:c:p:83-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.