IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v145y2017i1d10.1007_s10584-017-2082-1.html
   My bibliography  Save this article

Predictor weighting and geographical background delimitation: two synergetic sources of uncertainty when assessing species sensitivity to climate change

Author

Listed:
  • Pelayo Acevedo

    (Instituto de Investigación en Recursos Cinegéticos (IREC), UCLM-CSIC-JCCM)

  • Alberto Jiménez-Valverde

    (Universidad de Alcalá. A.P. 20 Campus Universitario)

  • Jorge M. Lobo

    (Museo Nacional de Ciencias Naturales (CSIC))

  • Raimundo Real

    (Universidad de Málaga)

Abstract

An accurate estimation of the expected consequences of climate change requires the proper quantification of the effect of climate on current species distributions. Several interrelated sources of uncertainty may affect the likelihood of species distribution models (SDMs) to determine the relative importance of climate. Our aim was to assess the relationship between the influence of geographical background (GB) delimitation and that of subtracting the non-climate effects from the weight of climatic predictors to estimate the combined influence of these two factors on predictions in climate change scenarios. The distribution of 40 endemic mammals in Western Europe have been modeled by (i) using the whole territory of Western Europe as the GB and also specifically delimiting the GB with a geographical criterion and (ii) considering climatic predictors in addition to other non-climatic variables in order to extract the pure effect of climate. The models were used to quantify species’ sensitivity to new climate scenarios. Results showed discrepancies among the analytical approaches. Changes in distribution obtained by considering the pure effect of climate were lower than those obtained by considering the apparent effect, and GB-delimited models yielded higher changes than those trained in Western Europe. We evidence that climate weighting and GB delimitation have dramatic influences on the projections of models when transferred to new scenarios. We emphasize that scientific studies and derived adaptation policies based on SDMs without an explicit consideration of the GB and the weighting of the climate-related variables may be misleading and in need of revision.

Suggested Citation

  • Pelayo Acevedo & Alberto Jiménez-Valverde & Jorge M. Lobo & Raimundo Real, 2017. "Predictor weighting and geographical background delimitation: two synergetic sources of uncertainty when assessing species sensitivity to climate change," Climatic Change, Springer, vol. 145(1), pages 131-143, November.
  • Handle: RePEc:spr:climat:v:145:y:2017:i:1:d:10.1007_s10584-017-2082-1
    DOI: 10.1007/s10584-017-2082-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2082-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2082-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    2. D. A. Fordham & H. R. Akçakaya & B. W. Brook & A. Rodríguez & P. C. Alves & E. Civantos & M. Triviño & M. J. Watts & M. B. Araújo, 2013. "Adapted conservation measures are required to save the Iberian lynx in a changing climate," Nature Climate Change, Nature, vol. 3(10), pages 899-903, October.
    3. Ana Márquez & Raimundo Real & Jesús Olivero & Alba Estrada, 2011. "Combining climate with other influential factors for modelling the impact of climate change on species distribution," Climatic Change, Springer, vol. 108(1), pages 135-157, September.
    4. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    5. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    6. VanDerWal, Jeremy & Shoo, Luke P. & Graham, Catherine & Williams, Stephen E., 2009. "Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?," Ecological Modelling, Elsevier, vol. 220(4), pages 589-594.
    7. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camila Agudelo-Rivera & Clark Granger-Castaño & Andrés Sánchez-Jabba, 2022. "The Expected Effects of Climate Change on Colombia’s Current Account," Borradores de Economia 1214, Banco de la Republica de Colombia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    2. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    3. Trevor H. Booth, 2017. "Assessing species climatic requirements beyond the realized niche: some lessons mainly from tree species distribution modelling," Climatic Change, Springer, vol. 145(3), pages 259-271, December.
    4. Platts, Philip J. & McClean, Colin J. & Lovett, Jon C. & Marchant, Rob, 2008. "Predicting tree distributions in an East African biodiversity hotspot: model selection, data bias and envelope uncertainty," Ecological Modelling, Elsevier, vol. 218(1), pages 121-134.
    5. Meineri, Eric & Skarpaas, Olav & Vandvik, Vigdis, 2012. "Modeling alpine plant distributions at the landscape scale: Do biotic interactions matter?," Ecological Modelling, Elsevier, vol. 231(C), pages 1-10.
    6. Keliang Zhang & Yin Zhang & Diwen Jia & Jun Tao, 2020. "Species Distribution Modeling of Sassafras Tzumu and Implications for Forest Management," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    7. Watts, Michael J. & Fordham, Damien A. & Akçakaya, H. Resit & Aiello-Lammens, Matthew E. & Brook, Barry W., 2013. "Tracking shifting range margins using geographical centroids of metapopulations weighted by population density," Ecological Modelling, Elsevier, vol. 269(C), pages 61-69.
    8. Alsamadisi, Adam G. & Tran, Liem T. & Papeş, Monica, 2020. "Employing inferences across scales: Integrating spatial data with different resolutions to enhance Maxent models," Ecological Modelling, Elsevier, vol. 415(C).
    9. Benjamin Y Ofori & Adam J Stow & John B Baumgartner & Linda J Beaumont, 2017. "Combining dispersal, landscape connectivity and habitat suitability to assess climate-induced changes in the distribution of Cunningham’s skink, Egernia cunninghami," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-17, September.
    10. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    11. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    12. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    13. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    14. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    15. Jorge Velásquez-Tibatá & María H Olaya-Rodríguez & Daniel López-Lozano & César Gutiérrez & Iván González & María C Londoño-Murcia, 2019. "BioModelos: A collaborative online system to map species distributions," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    16. Tasmin L. Rymer & Neville Pillay & Carsten Schradin, 2013. "Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys," Sustainability, MDPI, vol. 5(1), pages 1-24, January.
    17. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    18. Alexander S Anderson & Collin J Storlie & Luke P Shoo & Richard G Pearson & Stephen E Williams, 2013. "Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    19. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    20. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:145:y:2017:i:1:d:10.1007_s10584-017-2082-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.