IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0229253.html
   My bibliography  Save this article

A modeling workflow that balances automation and human intervention to inform invasive plant management decisions at multiple spatial scales

Author

Listed:
  • Nicholas E Young
  • Catherine S Jarnevich
  • Helen R Sofaer
  • Ian Pearse
  • Julia Sullivan
  • Peder Engelstad
  • Thomas J Stohlgren

Abstract

Predictions of habitat suitability for invasive plant species can guide risk assessments at regional and national scales and inform early detection and rapid-response strategies at local scales. We present a general approach to invasive species modeling and mapping that meets objectives at multiple scales. Our methodology is designed to balance trade-offs between developing highly customized models for few species versus fitting non-specific and generic models for numerous species. We developed a national library of environmental variables known to physiologically limit plant distributions and relied on human input based on natural history knowledge to further narrow the variable set for each species before developing habitat suitability models. To ensure efficiency, we used largely automated modeling approaches and human input only at key junctures. We explore and present uncertainty by using two alternative sources of background samples, including five statistical algorithms, and constructing model ensembles. We demonstrate the use and efficiency of the Software for Assisted Habitat Modeling [SAHM 2.1.2], a package in VisTrails, which performs the majority of the modeling analyses. Our workflow includes solicitation of expert feedback on model outputs such as spatial prediction results and variable response curves, and iterative improvement based on new data availability and directed field validation of initial model results. We highlight the utility of the models for decision-making at regional and local scales with case studies of two plant species that invade natural areas: fountain grass (Pennisetum setaceum) and goutweed (Aegopodium podagraria). By balancing model automation with human intervention, we can efficiently provide land managers with mapped predicted distributions for multiple invasive species to inform decisions across spatial scales.

Suggested Citation

  • Nicholas E Young & Catherine S Jarnevich & Helen R Sofaer & Ian Pearse & Julia Sullivan & Peder Engelstad & Thomas J Stohlgren, 2020. "A modeling workflow that balances automation and human intervention to inform invasive plant management decisions at multiple spatial scales," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
  • Handle: RePEc:plo:pone00:0229253
    DOI: 10.1371/journal.pone.0229253
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229253
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0229253&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0229253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas J. Stohlgren & John L. Schnase, 2006. "Risk Analysis for Biological Hazards: What We Need to Know about Invasive Species," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 163-173, February.
    2. Jarnevich, Catherine S. & Talbert, Marian & Morisette, Jeffery & Aldridge, Cameron & Brown, Cynthia S. & Kumar, Sunil & Manier, Daniel & Talbert, Colin & Holcombe, Tracy, 2017. "Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: An example with background selection," Ecological Modelling, Elsevier, vol. 363(C), pages 48-56.
    3. Thomas J. Stohlgren & Peter Ma & Sunil Kumar & Monique Rocca & Jeffrey T. Morisette & Catherine S. Jarnevich & Nate Benson, 2010. "Ensemble Habitat Mapping of Invasive Plant Species," Risk Analysis, John Wiley & Sons, vol. 30(2), pages 224-235, February.
    4. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    5. Regan Early & Bethany A. Bradley & Jeffrey S. Dukes & Joshua J. Lawler & Julian D. Olden & Dana M. Blumenthal & Patrick Gonzalez & Edwin D. Grosholz & Ines Ibañez & Luke P. Miller & Cascade J. B. Sort, 2016. "Global threats from invasive alien species in the twenty-first century and national response capacities," Nature Communications, Nature, vol. 7(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Antonio Catalano & Provvidenza Rita D’Urso & Federico Maci & Claudia Arcidiacono, 2023. "Influence of Parameters in SDM Application on Citrus Presence in Mediterranean Area," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    2. Karasov, Oleksandr & Heremans, Stien & Külvik, Mart & Domnich, Artem & Burdun, Iuliia & Kull, Ain & Helm, Aveliina & Uuemaa, Evelyn, 2022. "Beyond land cover: How integrated remote sensing and social media data analysis facilitates assessment of cultural ecosystem services," Ecosystem Services, Elsevier, vol. 53(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    2. Schartel, Tyler E. & Cao, Yong, 2024. "Background selection complexity influences Maxent predictive performance in freshwater systems," Ecological Modelling, Elsevier, vol. 488(C).
    3. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    4. Amanda M. West & Catherine S. Jarnevich & Nicholas E. Young & Pam L. Fuller, 2019. "Evaluating Potential Distribution of High‐Risk Aquatic Invasive Species in the Water Garden and Aquarium Trade at a Global Scale Based on Current Established Populations," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1169-1191, May.
    5. Rotllan-Puig, Xavier & Traveset, Anna, 2021. "Determining the minimal background area for species distribution models: MinBAR package," Ecological Modelling, Elsevier, vol. 439(C).
    6. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    7. Alsamadisi, Adam G. & Tran, Liem T. & Papeş, Monica, 2020. "Employing inferences across scales: Integrating spatial data with different resolutions to enhance Maxent models," Ecological Modelling, Elsevier, vol. 415(C).
    8. Wolke Tobón-Niedfeldt & Alicia Mastretta-Yanes & Tania Urquiza-Haas & Bárbara Goettsch & Angela P. Cuervo-Robayo & Esmeralda Urquiza-Haas & M. Andrea Orjuela-R & Francisca Acevedo Gasman & Oswaldo Oli, 2022. "Incorporating evolutionary and threat processes into crop wild relatives conservation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Alka Chaudhary & Mriganka Shekhar Sarkar & Bhupendra Singh Adhikari & Gopal Singh Rawat, 2021. "Ageratina adenophora and Lantana camara in Kailash Sacred Landscape, India: Current distribution and future climatic scenarios through modeling," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-15, May.
    10. Fourcade, Yoan, 2021. "Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara," Ecological Modelling, Elsevier, vol. 457(C).
    11. McDermott, Shana M. & Finnoff, David C. & Shogren, Jason F. & Kennedy, Chris J., 2021. "When does natural science uncertainty translate into economic uncertainty?," Ecological Economics, Elsevier, vol. 184(C).
    12. Barker, Justin R. & MacIsaac, Hugh J., 2022. "Species distribution models: Administrative boundary centroid occurrences require careful interpretation," Ecological Modelling, Elsevier, vol. 472(C).
    13. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & William D. Smith, 2010. "Robustness of Risk Maps and Survey Networks to Knowledge Gaps About a New Invasive Pest," Risk Analysis, John Wiley & Sons, vol. 30(2), pages 261-276, February.
    14. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    15. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    16. Tambo, Justice & Matimelo, Mathews & Ndhlovu, Mathias & Mbugua, Fredrick & Phiri, Noah, 2021. "Who Benefits? the Gender-Differentiated Impacts of Plant Clinics in Zambia," 2021 Conference, August 17-31, 2021, Virtual 315871, International Association of Agricultural Economists.
    17. Van Eupen, Camille & Maes, Dirk & Herremans, Marc & Swinnen, Kristijn R.R. & Somers, Ben & Luca, Stijn, 2021. "The impact of data quality filtering of opportunistic citizen science data on species distribution model performance," Ecological Modelling, Elsevier, vol. 444(C).
    18. Tambo, Justice A. & Matimelo, Mathews & Ndhlovu, Mathias & Mbugua, Fredrick & Phiri, Noah, 2021. "Gender-differentiated impacts of plant clinics on maize productivity and food security: Evidence from Zambia," World Development, Elsevier, vol. 145(C).
    19. Ochoa-Ochoa, Leticia M. & Flores-Villela, Oscar A. & Bezaury-Creel, Juan E., 2016. "Using one vs. many, sensitivity and uncertainty analyses of species distribution models with focus on conservation area networks," Ecological Modelling, Elsevier, vol. 320(C), pages 372-382.
    20. Saupe, E.E. & Barve, V. & Myers, C.E. & Soberón, J. & Barve, N. & Hensz, C.M. & Peterson, A.T. & Owens, H.L. & Lira-Noriega, A., 2012. "Variation in niche and distribution model performance: The need for a priori assessment of key causal factors," Ecological Modelling, Elsevier, vol. 237, pages 11-22.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0229253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.