IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v276y2014icp51-63.html
   My bibliography  Save this article

Estimating the optimal width of buffer strip for nonpoint source pollution control in the Three Gorges Reservoir Area, China

Author

Listed:
  • Shan, Nan
  • Ruan, Xiao-Hong
  • Xu, Jing
  • Pan, Zha-Rong

Abstract

Following the implementation of the Three Gorges Dam Project, nonpoint source (NPS) pollution has become a serious problem in the Three Gorges Reservoir (TGR). An urgent need exists to build an ecological shelter buffer (ESB) along the TGR to improve water quality. However, to determine the optimal buffer width of the ESB for NPS pollution control is challenging because of spatial variations in topography, hydrology, slope and drainage patterns in the Three Gorges Reservoir Area (TGRA). In this study, a methodology was established for modelling the ESB using geographic information systems (GIS) technology and was applied to a small-scale ungauged watershed (Panlong basin), a typical watershed along the TGR. A grid terrain analysis, an NPS pollution model, the Soil and Water Assessment Tool (SWAT) and a riparian simulation model, Riparian Ecosystem Management Model (REMM), were combined to estimate the transport of NPS pollutants and pollutant abatement through ESB at the watershed scale. Suitable widths of the ESB were estimated for different objectives of water quality protection to reflect regional variations in physical conditions. The results demonstrated that the ESB width depends strongly on the topographic features, soils types, hydrological conditions and conservation objectives of the TGRA. The estimated ESB with 58m in the averaged width can achieve the current requirement of water quality of TGRA. Most of the areas with higher values of NPS pollutant concentrations are located in the buffer drainage areas. Accordingly, an ESB, rather than other streams, most likely offers the greatest potential to improve water quality along the reservoir, and it is necessary to install ESBs along the tributary streams for NPS pollution control and water quality protection from a watershed perspective. The resulting map of ESB can indicate specific locations best suited for ESB at watershed scales, and can be applied to field-scale planning. The methodology described in this study demonstrates its capability as a decision support tool to guide ESB building, support land-use decision making and facilitate environmental policy formulation and evaluation throughout the TGRA.

Suggested Citation

  • Shan, Nan & Ruan, Xiao-Hong & Xu, Jing & Pan, Zha-Rong, 2014. "Estimating the optimal width of buffer strip for nonpoint source pollution control in the Three Gorges Reservoir Area, China," Ecological Modelling, Elsevier, vol. 276(C), pages 51-63.
  • Handle: RePEc:eee:ecomod:v:276:y:2014:i:c:p:51-63
    DOI: 10.1016/j.ecolmodel.2013.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014000040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shang, Xiao & Wang, Xinze & Zhang, Dalei & Chen, Weidong & Chen, Xuechu & Kong, Hainan, 2012. "An improved SWAT-based computational framework for identifying critical source areas for agricultural pollution at the lake basin scale," Ecological Modelling, Elsevier, vol. 226(C), pages 1-10.
    2. Shen, Z.Y. & Chen, L. & Liao, Q. & Liu, R.M. & Huang, Q., 2013. "A comprehensive study of the effect of GIS data on hydrology and non-point source pollution modeling," Agricultural Water Management, Elsevier, vol. 118(C), pages 93-102.
    3. Panagopoulos, Y. & Makropoulos, C. & Baltas, E. & Mimikou, M., 2011. "SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations," Ecological Modelling, Elsevier, vol. 222(19), pages 3500-3512.
    4. Lin, Wen-Tzu & Tsai, Jing-Shyan & Lin, Chao-Yuan & Huang, Pi-Hui, 2008. "Assessing reforestation placement and benefit for erosion control: A case study on the Chi-Jia-Wan Stream, Taiwan," Ecological Modelling, Elsevier, vol. 211(3), pages 444-452.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Zhang, Chengfu & Li, Sheng & Jamieson, Rob C. & Meng, Fan-Rui, 2017. "Segment-based assessment of riparian buffers on stream water quality improvement by applying an integrated model," Ecological Modelling, Elsevier, vol. 345(C), pages 1-9.
    3. Zhang, J.L. & Li, Y.P. & Wang, C.X. & Huang, G.H., 2015. "An inexact simulation-based stochastic optimization method for identifying effluent trading strategies of agricultural nonpoint sources," Agricultural Water Management, Elsevier, vol. 152(C), pages 72-90.
    4. Tengfei Yan & Yevheniia Kremenetska & Biyang Zhang & Songlin He & Xinfa Wang & Zelong Yu & Qiang Hu & Xiangpeng Liang & Manyi Fu & Zhen Wang, 2022. "The Relationship between Soil Particle Size Fractions, Associated Carbon Distribution and Physicochemical Properties of Historical Land-Use Types in Newly Formed Reservoir Buffer Strips," Sustainability, MDPI, vol. 14(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    2. Pokhrel, Bijay & Paudel, Krishna P., 2014. "Assessing the Efficiency of Alternative Best Management Practices to Reduce Nonpoint Source Pollution in the Mississippi-Atchafalaya River Basin (MARB)," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170699, Agricultural and Applied Economics Association.
    3. Niraula, Rewati & Kalin, Latif & Srivastava, Puneet & Anderson, Christopher J., 2013. "Identifying critical source areas of nonpoint source pollution with SWAT and GWLF," Ecological Modelling, Elsevier, vol. 268(C), pages 123-133.
    4. Boongaling, Cheamson Garret K. & Faustino-Eslava, Decibel V. & Lansigan, Felino P., 2018. "Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines," Land Use Policy, Elsevier, vol. 72(C), pages 116-128.
    5. Zhang, Dejian & Chen, Xingwei & Yao, Huaxia & Lin, Bingqing, 2015. "Improved calibration scheme of SWAT by separating wet and dry seasons," Ecological Modelling, Elsevier, vol. 301(C), pages 54-61.
    6. Wen-Chieh Chou, 2010. "Modelling Watershed Scale Soil Loss Prediction and Sediment Yield Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2075-2090, August.
    7. Eren Germeç & Okan Ürker, 2023. "Investigation of a SWAT Model for Environmental Health Management Based on the Water Quality Parameters of a Stream System in Central Anatolia (Türkiye)," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    8. Xuekai Chen & Guojian He & Xiaobo Liu & Bogen Li & Wenqi Peng & Fei Dong & Aiping Huang & Weijie Wang & Qiuyue Lian, 2021. "Sub-Watershed Parameter Transplantation Method for Non-Point Source Pollution Estimation in Complex Underlying Surface Environment," Land, MDPI, vol. 10(12), pages 1-25, December.
    9. Alam, Md Jahangir & Dutta, Dushmanta, 2012. "A process-based and distributed model for nutrient dynamics in river basin: Development, testing and applications," Ecological Modelling, Elsevier, vol. 247(C), pages 112-124.
    10. S. Wan & T. Lei & T. Chou, 2010. "A novel data mining technique of analysis and classification for landslide problems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 211-230, January.
    11. Zou, Tingting & Meng, Fanlei & Zhou, Jichen & Ying, Hao & Liu, Xuejun & Hou, Yong & Zhao, Zhengxiong & Zhang, Fusuo & Xu, Wen, 2023. "Quantifying nitrogen and phosphorus losses from crop and livestock production and mitigation potentials in Erhai Lake Basin, China," Agricultural Systems, Elsevier, vol. 211(C).
    12. Liu, Ruimin & Zhang, Peipei & Wang, Xiujuan & Chen, Yaxin & Shen, Zhenyao, 2013. "Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed," Agricultural Water Management, Elsevier, vol. 117(C), pages 9-18.
    13. Jinjin Gu & Yuan Cao & Min Wu & Min Song & Lin Wang, 2022. "A Novel Method for Watershed Best Management Practices Spatial Optimal Layout under Uncertainty," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    14. Guanghui Li & Lei Chang & Haoye Li & Yuefen Li, 2023. "Modeling the Impact of Land Use Optimization on Non-Point Source Pollution: Evidence from Chinese Reservoir Watershed," Land, MDPI, vol. 13(1), pages 1-17, December.
    15. Guangxing Ji & Zhizhu Lai & Haibin Xia & Hao Liu & Zheng Wang, 2021. "Future Runoff Variation and Flood Disaster Prediction of the Yellow River Basin Based on CA-Markov and SWAT," Land, MDPI, vol. 10(4), pages 1-19, April.
    16. Velia Bigi & Alessandro Pezzoli & Elena Comino & Maurizio Rosso, 2020. "A Vulnerability Assessment in Scant Data Context: The Case of North Horr Sub-County," Sustainability, MDPI, vol. 12(15), pages 1-23, July.
    17. I. Boskidis & G. Gikas & G. Sylaios & V. Tsihrintzis, 2012. "Hydrologic and Water Quality Modeling of Lower Nestos River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 3023-3051, August.
    18. Leh, Mansoor D.K. & Sharpley, Andrew N. & Singh, Gurdeep & Matlock, Marty D., 2018. "Assessing the impact of the MRBI program in a data limited Arkansas watershed using the SWAT model," Agricultural Water Management, Elsevier, vol. 202(C), pages 202-219.
    19. Shi, Yingyuan & Xu, Gaohong & Wang, Yonggui & Engel, Bernard A. & Peng, Hong & Zhang, Wanshun & Cheng, Meiling & Dai, Minglong, 2017. "Modelling hydrology and water quality processes in the Pengxi River basin of the Three Gorges Reservoir using the soil and water assessment tool," Agricultural Water Management, Elsevier, vol. 182(C), pages 24-38.
    20. Jiayu Peng & Chunling Jin & Yue Wu & Zeying Hou & Sijia Gao & Zhaosheng Chu & Binghui Zheng, 2022. "Modeling Non-Point Source Nutrient Loads with Different Cropping Systems in an Agricultural Lake Watershed in Southwestern China: From Field to Watershed Scale," Mathematics, MDPI, vol. 10(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:276:y:2014:i:c:p:51-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.