IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v118y2013icp93-102.html
   My bibliography  Save this article

A comprehensive study of the effect of GIS data on hydrology and non-point source pollution modeling

Author

Listed:
  • Shen, Z.Y.
  • Chen, L.
  • Liao, Q.
  • Liu, R.M.
  • Huang, Q.

Abstract

The Geographic Information System (GIS) has been extensively integrated into hydrology and non-point source (H/NPS) pollution modeling. However, few studies have been carried out on the effect of GIS inputs on NPS modeling and the prediction uncertainty related to the combination of different GIS inputs. In this paper, the effect of GIS data on H/NPS simulation was investigated by re-sampling the initial GIS data into new grid sizes and grouping the available GIS maps in all possible ways. The effect of GIS inputs was then quantified by the Soil and Water Assessment Tool (SWAT) in the Daning watershed, China. Based on the results, the GIS inputs had a limited impact on runoff and nitrogen (N) predictions, while sediment and phosphorus (P) simulations were sensitively biased by GIS data. This study further demonstrated that a level (threshold) of GIS resolution existed, within which more precise data would not be of benefit to SWAT prediction. To reduce prediction uncertainty, the digital elevation model (DEM) should be tackled to determine at which resolution the model would perform optimally.

Suggested Citation

  • Shen, Z.Y. & Chen, L. & Liao, Q. & Liu, R.M. & Huang, Q., 2013. "A comprehensive study of the effect of GIS data on hydrology and non-point source pollution modeling," Agricultural Water Management, Elsevier, vol. 118(C), pages 93-102.
  • Handle: RePEc:eee:agiwat:v:118:y:2013:i:c:p:93-102
    DOI: 10.1016/j.agwat.2012.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412003198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Q. & Huang, G.H. & Cai, Y.P., 2011. "Radial interval chance-constrained programming for agricultural non-point source water pollution control under uncertainty," Agricultural Water Management, Elsevier, vol. 98(10), pages 1595-1606, August.
    2. Fernandez, G.P. & Chescheir, G.M. & Skaggs, R.W. & Amatya, D.M., 2006. "DRAINMOD-GIS: A lumped parameter watershed scale drainage and water quality model," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 77-97, March.
    3. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    4. Li, W. & Li, Y.P. & Li, C.H. & Huang, G.H., 2010. "An inexact two-stage water management model for planning agricultural irrigation under uncertainty," Agricultural Water Management, Elsevier, vol. 97(11), pages 1905-1914, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yingyuan & Xu, Gaohong & Wang, Yonggui & Engel, Bernard A. & Peng, Hong & Zhang, Wanshun & Cheng, Meiling & Dai, Minglong, 2017. "Modelling hydrology and water quality processes in the Pengxi River basin of the Three Gorges Reservoir using the soil and water assessment tool," Agricultural Water Management, Elsevier, vol. 182(C), pages 24-38.
    2. Shan, Nan & Ruan, Xiao-Hong & Xu, Jing & Pan, Zha-Rong, 2014. "Estimating the optimal width of buffer strip for nonpoint source pollution control in the Three Gorges Reservoir Area, China," Ecological Modelling, Elsevier, vol. 276(C), pages 51-63.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    2. M. Dedewanou & S. Binet & J. Rouet & Y. Coquet & A. Bruand & H. Noel, 2015. "Groundwater Vulnerability and Risk Mapping Based on Residence Time Distributions: Spatial Analysis for the Estimation of Lumped Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5489-5504, December.
    3. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    4. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    5. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    6. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    7. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    8. Medwid, Laura J. & Lambert, Dayton M. & Clark, Christopher D. & Hawkins, Shawn A. & McClellan, Hannah A., 2016. "Estimating Soil Loss Abatement Curves with Primary Survey Data and Hydrologic Models: An Empirical Example for Livestock Production in an East Tennessee Watershed," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230052, Southern Agricultural Economics Association.
    9. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    10. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    11. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    12. Negar Tayebzadeh Moghadam & Karim C. Abbaspour & Bahram Malekmohammadi & Mario Schirmer & Ahmad Reza Yavari, 2021. "Spatiotemporal Modelling of Water Balance Components in Response to Climate and Landuse Changes in a Heterogeneous Mountainous Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 793-810, February.
    13. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    14. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    15. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    16. S. K. Aryal & S. Ashbolt & B. S. McIntosh & K. P. Petrone & S. Maheepala & R. K. Chowdhury & T. Gardener & R. Gardiner, 2016. "Assessing and Mitigating the Hydrological Impacts of Urbanisation in Semi-Urban Catchments Using the Storm Water Management Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5437-5454, November.
    17. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    18. Kotchakarn Nantasaksiri & Patcharawat Charoen-Amornkitt & Takashi Machimura, 2021. "Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration," Energies, MDPI, vol. 14(5), pages 1-15, March.
    19. Howard, Gregory E. & Zhang, Wendong & Valcu-Lisman, Adriana M., 2021. "Evaluating the Efficiency-Participation Tradeoff in Agricultural Conservation Programs: The Effect of Reverse Auctions, Spatial Targeting, and Higher Offered Payments," 2021 Annual Meeting, August 1-3, Austin, Texas 313926, Agricultural and Applied Economics Association.
    20. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:118:y:2013:i:c:p:93-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.