IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v247y2012icp112-124.html
   My bibliography  Save this article

A process-based and distributed model for nutrient dynamics in river basin: Development, testing and applications

Author

Listed:
  • Alam, Md Jahangir
  • Dutta, Dushmanta

Abstract

A new grid-based model of nutrient dynamics and transport process has been developed within a distributed hydrological modelling framework and integrated with river network module. The key aspect of this development is a process based description of nutrient generation process on the land surface and its related nutrient release with hydrologic runoff and soil erosion. Whereas the conventional modelling uses the event mean concentration method for nutrient dynamics modelling and estimates nutrient loads from catchments to the rivers this study has introduced an export function based release related with flow capacity. The river module solves the dynamic equation for transport and chemical reaction. The model output is available in high spatial and temporal resolution, which was tested and verified applying in two catchment areas from different hydro-climatic backgrounds. The model was able to simulate short term high intensity flood events as well as long term seasonal patterns. The simulated results for most of the nutrient parameters are within acceptable range as reflected by measures of statistical indices and visual interpretation. For example, the R2 values for different nutrient levels in the Saru River, Japan are within the range of 0.83–0.99 and 0.66–0.87 for calibration and validation, respectively. Similarly, the relative root mean square error (RRMSE) values for different nutrient levels in the Saru River range between 0.06–0.22 and 0.06–0.26 for calibration and validations, respectively. The maximum load of nutrients in each grid was extracted from time series output, analyzed further and presented in two dimensional maps, which showcase the usefulness of the model in decision making process for management of land and maintenance of the in-stream water quality.

Suggested Citation

  • Alam, Md Jahangir & Dutta, Dushmanta, 2012. "A process-based and distributed model for nutrient dynamics in river basin: Development, testing and applications," Ecological Modelling, Elsevier, vol. 247(C), pages 112-124.
  • Handle: RePEc:eee:ecomod:v:247:y:2012:i:c:p:112-124
    DOI: 10.1016/j.ecolmodel.2012.07.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012003808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.07.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yiannis Panagopoulos & Christos Makropoulos & Maria Mimikou, 2011. "Diffuse Surface Water Pollution: Driving Factors for Different Geoclimatic Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3635-3660, November.
    2. Yang, Shengtian & Dong, Guotao & Zheng, Donghai & Xiao, Honglin & Gao, Yunfei & Lang, Yang, 2011. "Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3701-3717.
    3. Panagopoulos, Y. & Makropoulos, C. & Baltas, E. & Mimikou, M., 2011. "SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations," Ecological Modelling, Elsevier, vol. 222(19), pages 3500-3512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Kabir & Dushmanta Dutta & Sadayuki Hironaka, 2014. "Estimating Sediment Budget at a River Basin Scale Using a Process-Based Distributed Modelling Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4143-4160, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, Nan & Ruan, Xiao-Hong & Xu, Jing & Pan, Zha-Rong, 2014. "Estimating the optimal width of buffer strip for nonpoint source pollution control in the Three Gorges Reservoir Area, China," Ecological Modelling, Elsevier, vol. 276(C), pages 51-63.
    2. Boongaling, Cheamson Garret K. & Faustino-Eslava, Decibel V. & Lansigan, Felino P., 2018. "Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines," Land Use Policy, Elsevier, vol. 72(C), pages 116-128.
    3. Qiang Fu & Yunqiang Zhu & Shengli Huang, 2020. "Regionalization of Agricultural Nonpoint Source Pollution over China with a Combination of Qualitative and Quantitative Method," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    4. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    5. Zhang, Dejian & Chen, Xingwei & Yao, Huaxia & Lin, Bingqing, 2015. "Improved calibration scheme of SWAT by separating wet and dry seasons," Ecological Modelling, Elsevier, vol. 301(C), pages 54-61.
    6. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    7. Xiaosi Su & Huang Wang & Yuling Zhang, 2013. "Health Risk Assessment of Nitrate Contamination in Groundwater: A Case Study of an Agricultural Area in Northeast China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3025-3034, June.
    8. Anna Sperotto & Josè Luis Molina & Silvia Torresan & Andrea Critto & Manuel Pulido-Velazquez & Antonio Marcomini, 2019. "Water Quality Sustainability Evaluation under Uncertainty: A Multi-Scenario Analysis Based on Bayesian Networks," Sustainability, MDPI, vol. 11(17), pages 1-34, August.
    9. Eren Germeç & Okan Ürker, 2023. "Investigation of a SWAT Model for Environmental Health Management Based on the Water Quality Parameters of a Stream System in Central Anatolia (Türkiye)," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    10. Md Jahangir Alam & Dushmanta Dutta, 2016. "A Sub-Catchment Based Approach for Modelling Nutrient Dynamics and Transport at a River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5455-5478, November.
    11. Kui Cai & Chang Li, 2022. "Ecological Risk, Input Flux, and Source of Heavy Metals in the Agricultural Plain of Hebei Province, China," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    12. Amaya Novo & Joseba Bayon & Daniel Castro-Fresno & Jorge Rodriguez-Hernandez, 2013. "Temperature Performance of Different Pervious Pavements: Rainwater Harvesting for Energy Recovery Purposes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5003-5016, December.
    13. Xiao Pu & Hongguang Cheng & Lu Lu & Shengtian Yang & Jing Xie & Fanghua Hao, 2015. "Spatial Profiling and Assessing Dominance of Sources to Water Phosphorus Burden in a Shallow Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 715-729, February.
    14. Ivan Lizaga & Borja Latorre & Leticia Gaspar & Ana Navas, 2020. "FingerPro: an R Package for Tracking the Provenance of Sediment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3879-3894, September.
    15. Pokhrel, Bijay & Paudel, Krishna P., 2014. "Assessing the Efficiency of Alternative Best Management Practices to Reduce Nonpoint Source Pollution in the Mississippi-Atchafalaya River Basin (MARB)," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170699, Agricultural and Applied Economics Association.
    16. Kazi Rahman & Chetan Maringanti & Martin Beniston & Florian Widmer & Karim Abbaspour & Anthony Lehmann, 2013. "Streamflow Modeling in a Highly Managed Mountainous Glacier Watershed Using SWAT: The Upper Rhone River Watershed Case in Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 323-339, January.
    17. Liu, Ruimin & Zhang, Peipei & Wang, Xiujuan & Chen, Yaxin & Shen, Zhenyao, 2013. "Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed," Agricultural Water Management, Elsevier, vol. 117(C), pages 9-18.
    18. Jinjin Gu & Yuan Cao & Min Wu & Min Song & Lin Wang, 2022. "A Novel Method for Watershed Best Management Practices Spatial Optimal Layout under Uncertainty," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    19. Guanghui Li & Lei Chang & Haoye Li & Yuefen Li, 2023. "Modeling the Impact of Land Use Optimization on Non-Point Source Pollution: Evidence from Chinese Reservoir Watershed," Land, MDPI, vol. 13(1), pages 1-17, December.
    20. Guangxing Ji & Zhizhu Lai & Haibin Xia & Hao Liu & Zheng Wang, 2021. "Future Runoff Variation and Flood Disaster Prediction of the Yellow River Basin Based on CA-Markov and SWAT," Land, MDPI, vol. 10(4), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:247:y:2012:i:c:p:112-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.