IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v202y2018icp202-219.html
   My bibliography  Save this article

Assessing the impact of the MRBI program in a data limited Arkansas watershed using the SWAT model

Author

Listed:
  • Leh, Mansoor D.K.
  • Sharpley, Andrew N.
  • Singh, Gurdeep
  • Matlock, Marty D.

Abstract

The USDA Natural Resources Conservation Service (NRCS) developed the Mississippi River Basin Healthy Watersheds Initiative (MRBI) program to improve the health, water quality and wildlife habitat within the Mississippi River Basin. Lake Conway Point Remove (LCPR) watershed was identified as one of the watersheds for the MRBI program implementation. The goal of this paper is to evaluate the effectiveness of the MRBI program in LCPR watershed using a computer simulation model. Seven best management practices (BMPs) (pond, wetland, pond and wetland, cover crops, vegetative filter strips, grassed waterways and forage and biomass planting) were modelled under four placement strategies: random placement in 30% of the watershed, random placement in 30% hydrologic response units (HRUs) of the high priority hydrological unit code (HUCs), placement in the top 30% of the high priority HUCs, and top 30% of the HRUs in the HUCs near the outlet of the watershed. The model was calibrated for flow for the period 1987–2006 and validated for the period 2007–2012. Sediment and nutrients were validated from 2011 to 2012. Out of the BMPs evaluated, grassed waterways proved to be the most effective BMP in reducing sediment and nutrient loads from row crop (soy beans) and pasture fields. Reductions at the watershed outlet ranged 0–1% for flow, 0.28–14% for sediment, 0.3–10% for TP and 0.3–9% for TN. Relatively higher reductions were observed at the subwatershed level, flow reductions ranged 0–51%, sediment reductions −1 to 79%, TP −1 to 65% and TN −0.37 to 66% depending on BMP type, placement scenario, and watershed characteristics. The results from this study provide the data to help prioritize monitoring needs for collecting watershed response data in LCPR and BMP implementation evaluations, which could be used to inform decisions in similar studies.

Suggested Citation

  • Leh, Mansoor D.K. & Sharpley, Andrew N. & Singh, Gurdeep & Matlock, Marty D., 2018. "Assessing the impact of the MRBI program in a data limited Arkansas watershed using the SWAT model," Agricultural Water Management, Elsevier, vol. 202(C), pages 202-219.
  • Handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:202-219
    DOI: 10.1016/j.agwat.2018.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418300982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    2. Panagopoulos, Y. & Makropoulos, C. & Baltas, E. & Mimikou, M., 2011. "SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations," Ecological Modelling, Elsevier, vol. 222(19), pages 3500-3512.
    3. Yuan, Yongping & Bingner, R.L. & Boydstun, J., 2006. "Development of TMDL watershed implementation plan using Annualized AGNPS," Land Use and Water Resources Research, University of Newcastle upon Tyne, Centre for Land Use and Water Resources Research, vol. 6, pages 1-8.
    4. Niraula, Rewati & Kalin, Latif & Srivastava, Puneet & Anderson, Christopher J., 2013. "Identifying critical source areas of nonpoint source pollution with SWAT and GWLF," Ecological Modelling, Elsevier, vol. 268(C), pages 123-133.
    5. Sharpley, Andrew N. & Gburek, William J. & Folmar, G. & Pionke, H. B., 1999. "Sources of phosphorus exported from an agricultural watershed in Pennsylvania," Agricultural Water Management, Elsevier, vol. 41(2), pages 77-89, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renfang Chang & Yunqi Wang & Huifang Liu & Zhen Wang & Lei Ma & Jiancong Zhang & Junjie Li & Zhiyi Yan & Yihui Zhang & Danqing Li, 2024. "Optimizing Non-Point Source Pollution Management: Evaluating Cost-Effective Strategies in a Small Watershed within the Three Gorges Reservoir Area, China," Land, MDPI, vol. 13(6), pages 1-21, May.
    2. Dipesh Nepal & Prem B. Parajuli, 2022. "Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT," Agriculture, MDPI, vol. 12(4), pages 1-19, April.
    3. Peter Miele & Rituraj Shukla & Shiv Prasher & Ramesh Pal Rudra & Prasad Daggupati & Pradeep Kumar Goel & Katie Stammler & Anand Krishna Gupta, 2023. "Assessing the Impact of BMPs on Water Quality and Quantity in a Flat Agricultural Watershed in Southern Ontario," Resources, MDPI, vol. 12(12), pages 1-21, December.
    4. Shreeya Bhattarai & Prem B. Parajuli, 2023. "Best Management Practices Affect Water Quality in Coastal Watersheds," Sustainability, MDPI, vol. 15(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    2. Eren Germeç & Okan Ürker, 2023. "Investigation of a SWAT Model for Environmental Health Management Based on the Water Quality Parameters of a Stream System in Central Anatolia (Türkiye)," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    3. Liu, Ruimin & Zhang, Peipei & Wang, Xiujuan & Chen, Yaxin & Shen, Zhenyao, 2013. "Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed," Agricultural Water Management, Elsevier, vol. 117(C), pages 9-18.
    4. I. Boskidis & G. Gikas & G. Sylaios & V. Tsihrintzis, 2012. "Hydrologic and Water Quality Modeling of Lower Nestos River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 3023-3051, August.
    5. Shan, Nan & Ruan, Xiao-Hong & Xu, Jing & Pan, Zha-Rong, 2014. "Estimating the optimal width of buffer strip for nonpoint source pollution control in the Three Gorges Reservoir Area, China," Ecological Modelling, Elsevier, vol. 276(C), pages 51-63.
    6. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    7. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    8. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    9. Medwid, Laura J. & Lambert, Dayton M. & Clark, Christopher D. & Hawkins, Shawn A. & McClellan, Hannah A., 2016. "Estimating Soil Loss Abatement Curves with Primary Survey Data and Hydrologic Models: An Empirical Example for Livestock Production in an East Tennessee Watershed," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230052, Southern Agricultural Economics Association.
    10. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    11. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    12. Negar Tayebzadeh Moghadam & Karim C. Abbaspour & Bahram Malekmohammadi & Mario Schirmer & Ahmad Reza Yavari, 2021. "Spatiotemporal Modelling of Water Balance Components in Response to Climate and Landuse Changes in a Heterogeneous Mountainous Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 793-810, February.
    13. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    14. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    15. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    16. S. K. Aryal & S. Ashbolt & B. S. McIntosh & K. P. Petrone & S. Maheepala & R. K. Chowdhury & T. Gardener & R. Gardiner, 2016. "Assessing and Mitigating the Hydrological Impacts of Urbanisation in Semi-Urban Catchments Using the Storm Water Management Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5437-5454, November.
    17. Boongaling, Cheamson Garret K. & Faustino-Eslava, Decibel V. & Lansigan, Felino P., 2018. "Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines," Land Use Policy, Elsevier, vol. 72(C), pages 116-128.
    18. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    19. Kotchakarn Nantasaksiri & Patcharawat Charoen-Amornkitt & Takashi Machimura, 2021. "Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration," Energies, MDPI, vol. 14(5), pages 1-15, March.
    20. Howard, Gregory E. & Zhang, Wendong & Valcu-Lisman, Adriana M., 2021. "Evaluating the Efficiency-Participation Tradeoff in Agricultural Conservation Programs: The Effect of Reverse Auctions, Spatial Targeting, and Higher Offered Payments," 2021 Annual Meeting, August 1-3, Austin, Texas 313926, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:202-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.