IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v139y2024ics0264999324001706.html
   My bibliography  Save this article

How does extreme heat affect carbon emission intensity? Evidence from county-level data in China

Author

Listed:
  • Jiang, Lei
  • Yang, Linshuang
  • Wu, Qingyang
  • Zhang, Xinyue

Abstract

This study investigates the impact of increasingly frequent extreme heat events due to climate change on carbon emission intensities in China. Using spline regressions on county-level data from 2000 to 2019, we identify an asymmetric U-shaped relationship between daily mean temperatures and carbon intensities. Each additional day with temperatures above 33 °C in each location results in a 0.9% rise in the average annual carbon intensity, driven by higher energy consumption for cooling. We also explore the mitigating effects of China's low-carbon city initiatives and emissions trading scheme. By combining our estimation results with future temperature trajectories, we simulate that, in the long run, China's carbon intensity can increase by 8–13% under the SSP1-2.6 scenario and 24–51% under the SSP5-8.5 scenario. Our findings underscore the urgency for policymakers to thoroughly assess the socioeconomic impacts of heat waves and incorporate climate resilience into overall sustainable development plans.

Suggested Citation

  • Jiang, Lei & Yang, Linshuang & Wu, Qingyang & Zhang, Xinyue, 2024. "How does extreme heat affect carbon emission intensity? Evidence from county-level data in China," Economic Modelling, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:ecmode:v:139:y:2024:i:c:s0264999324001706
    DOI: 10.1016/j.econmod.2024.106814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999324001706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2024.106814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin F. Jones & Benjamin A. Olken, 2010. "Climate Shocks and Exports," American Economic Review, American Economic Association, vol. 100(2), pages 454-459, May.
    2. Jing-Li Fan & Bao-Jun Tang & Hao Yu & Yun-Bing Hou & Yi-Ming Wei, 2015. "Impact of climatic factors on monthly electricity consumption of China’s sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 2027-2037, January.
    3. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    4. Ariel Miara & Jordan E. Macknick & Charles J. Vörösmarty & Vincent C. Tidwell & Robin Newmark & Balazs Fekete, 2017. "Climate and water resource change impacts and adaptation potential for US power supply," Nature Climate Change, Nature, vol. 7(11), pages 793-798, November.
    5. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    6. Garth Heutel & Nolan H. Miller & David Molitor, 2021. "Adaptation and the Mortality Effects of Temperature across U.S. Climate Regions," The Review of Economics and Statistics, MIT Press, vol. 103(4), pages 740-753, October.
    7. Ashwin Rode & Tamma Carleton & Michael Delgado & Michael Greenstone & Trevor Houser & Solomon Hsiang & Andrew Hultgren & Amir Jina & Robert E. Kopp & Kelly E. McCusker & Ishan Nath & James Rising & Ji, 2021. "Author Correction: Estimating a social cost of carbon for global energy consumption," Nature, Nature, vol. 600(7889), pages 17-17, December.
    8. Considine, Timothy J., 2000. "The impacts of weather variations on energy demand and carbon emissions," Resource and Energy Economics, Elsevier, vol. 22(4), pages 295-314, October.
    9. Chen, Xiaoguang & Yang, Lu, 2019. "Temperature and industrial output: Firm-level evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 257-274.
    10. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2016. "Impacts of climate change on agriculture: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 105-124.
    11. Shouwei Li & Xin Wu, 2023. "How does climate risk affect bank loan supply? Empirical evidence from China," Economic Change and Restructuring, Springer, vol. 56(4), pages 2169-2204, August.
    12. Chen, Shuai & Gong, Binlei, 2021. "Response and adaptation of agriculture to climate change: Evidence from China," Journal of Development Economics, Elsevier, vol. 148(C).
    13. Zhang, Zhiyue & Zhang, Wenhao & Wu, Qingyang & Liu, Jiahe & Jiang, Lei, 2024. "Climate Adaptation through Trade: Evidence and Mechanism from Heatwaves on Firms' Imports," China Economic Review, Elsevier, vol. 84(C).
    14. Ashwin Rode & Tamma Carleton & Michael Delgado & Michael Greenstone & Trevor Houser & Solomon Hsiang & Andrew Hultgren & Amir Jina & Robert E. Kopp & Kelly E. McCusker & Ishan Nath & James Rising & Ji, 2021. "Estimating a social cost of carbon for global energy consumption," Nature, Nature, vol. 598(7880), pages 308-314, October.
    15. Ali Ahmad, 2021. "Increase in frequency of nuclear power outages due to changing climate," Nature Energy, Nature, vol. 6(7), pages 755-762, July.
    16. Wang, Hui & Zhang, Yunyun & Lin, Weifen & Wei, Wendong, 2023. "Transregional electricity transmission and carbon emissions: Evidence from ultra-high voltage transmission projects in China," Energy Economics, Elsevier, vol. 123(C).
    17. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    18. Wang, M. & Zhou, P., 2017. "Does emission permit allocation affect CO2 cost pass-through? A theoretical analysis," Energy Economics, Elsevier, vol. 66(C), pages 140-146.
    19. Jiang, Lei & Yang, Yue & Wu, Qingyang & Yang, Linshuang & Yang, Zaoli, 2024. "Hotter days, dirtier air: The impact of extreme heat on energy and pollution intensity in China," Energy Economics, Elsevier, vol. 130(C).
    20. Wang, Di & Zhang, Peng & Chen, Shuai & Zhang, Ning, 2024. "Adaptation to temperature extremes in Chinese agriculture, 1981 to 2010," Journal of Development Economics, Elsevier, vol. 166(C).
    21. Yating Li & William A. Pizer & Libo Wu, 2019. "Climate change and residential electricity consumption in the Yangtze River Delta, China," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(2), pages 472-477, January.
    22. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    23. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    24. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    25. Fan, Jing-Li & Hu, Jia-Wei & Zhang, Xian, 2019. "Impacts of climate change on electricity demand in China: An empirical estimation based on panel data," Energy, Elsevier, vol. 170(C), pages 880-888.
    26. Burke, Marshall & Hsiang, Solomon M & Miguel, Edward, 2015. "Global non-linear effect of temperature on economic production," Department of Economics, Working Paper Series qt3g72r0zv, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    27. Ang, B.W. & Wang, H. & Ma, Xiaojing, 2017. "Climatic influence on electricity consumption: The case of Singapore and Hong Kong," Energy, Elsevier, vol. 127(C), pages 534-543.
    28. David Zilberman & Jinhua Zhao & Amir Heiman, 2012. "Adoption Versus Adaptation, with Emphasis on Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 27-53, August.
    29. Chen Zhang & Hua Liao & Zhifu Mi, 2019. "Climate impacts: temperature and electricity consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1259-1275, December.
    30. Chen, Xiaoguang & Chen, Shuai, 2018. "China feels the heat: negative impacts of high temperatures on China’s rice sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), October.
    31. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
    32. Li, Jianglong & Yang, Lisha & Long, Houyin, 2018. "Climatic impacts on energy consumption: Intensive and extensive margins," Energy Economics, Elsevier, vol. 71(C), pages 332-343.
    33. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    34. Quiggin, John C. & Horowitz, John K., 2003. "Costs of adjustment to climate change," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(4), pages 1-18.
    35. Kien Le & My Nguyen, 2023. "Early-Life Rainfall and Long-Term Human Capital Accumulation of African Women," Economic Development and Cultural Change, University of Chicago Press, vol. 72(1), pages 361-387.
    36. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    37. Olivier Deschenes, 2018. "Temperature Variability and Mortality: Evidence from 16 Asian Countries," Asian Development Review, MIT Press, vol. 35(2), pages 1-30, September.
    38. Wai-Ming To & Peter Ka Chun Lee & Tsz-Ming Lai, 2017. "Modeling of Monthly Residential and Commercial Electricity Consumption Using Nonlinear Seasonal Models—The Case of Hong Kong," Energies, MDPI, vol. 10(7), pages 1-16, June.
    39. Hocheol Jeon, 2019. "The Impact of Climate Change on Passenger Vehicle Fuel Consumption: Evidence from U.S. Panel Data," Energies, MDPI, vol. 12(23), pages 1-15, November.
    40. Cai, Xiqian & Lu, Yi & Wang, Jin, 2018. "The impact of temperature on manufacturing worker productivity: Evidence from personnel data," Journal of Comparative Economics, Elsevier, vol. 46(4), pages 889-905.
    41. Mideksa, Torben K. & Kallbekken, Steffen, 2010. "The impact of climate change on the electricity market: A review," Energy Policy, Elsevier, vol. 38(7), pages 3579-3585, July.
    42. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    43. Xu, Xinkuo & Han, Liyan & Lv, Xiaofeng, 2016. "Household carbon inequality in urban China, its sources and determinants," Ecological Economics, Elsevier, vol. 128(C), pages 77-86.
    44. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    45. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    46. Xiaoguang Chen & Shuai Chen, 2018. "China feels the heat: negative impacts of high temperatures on China's rice sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), pages 576-588, October.
    47. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Qingyang & Li, Shanhong, 2024. "Decarbonization by digits: How data factors drive nonlinear sustainable dynamics in manufacturing," Applied Energy, Elsevier, vol. 374(C).
    2. Zhimin Peng & Miao Li, 2025. "Carbon Emissions Intensity of the Transportation Sector in China: Spatiotemporal Differentiation, Trends Forecasting and Convergence Characteristics," Sustainability, MDPI, vol. 17(3), pages 1-30, January.
    3. Fei Wang & Changjian Wang & Xiaojie Lin & Zeng Li & Changlong Sun, 2024. "County-Level Spatiotemporal Dynamics and Driving Mechanisms of Carbon Emissions in the Pearl River Delta Urban Agglomeration, China," Land, MDPI, vol. 13(11), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Lei & Yang, Yue & Wu, Qingyang & Yang, Linshuang & Yang, Zaoli, 2024. "Hotter days, dirtier air: The impact of extreme heat on energy and pollution intensity in China," Energy Economics, Elsevier, vol. 130(C).
    2. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    3. Feriga,Moustafa Amgad Moustafa Ahmed Moustafa & Lozano Gracia,Nancy & Serneels,Pieter Maria, 2024. "The Impact of Climate Change on Work : Lessons for Developing Countries," Policy Research Working Paper Series 10682, The World Bank.
    4. Moustafa Feriga & Mancy Lozano Gracia & Pieter Serneels, 2024. "The impact of climate change on work lessons for developing countries," CSAE Working Paper Series 2024-02, Centre for the Study of African Economies, University of Oxford.
    5. Jimmy Karlsson, 2021. "Temperature and Exports: Evidence from the United States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(2), pages 311-337, October.
    6. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    7. Lehr, Jakob & Rehdanz, Katrin, 2024. "The effect of temperature on energy related CO2 emissions and economic performance in German industry," Energy Economics, Elsevier, vol. 138(C).
    8. Lanlan Li & Xinpei Song & Jingjing Li & Ke Li & Jianling Jiao, 2023. "The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?," Climatic Change, Springer, vol. 176(3), pages 1-26, March.
    9. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    10. Duan, Hongbo & Yuan, Deyu & Cai, Zongwu & Wang, Shouyang, 2022. "Valuing the impact of climate change on China’s economic growth," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 155-174.
    11. Wang, Hai-jie & Tang, Kai, 2023. "Extreme climate, innovative ability and energy efficiency," Energy Economics, Elsevier, vol. 120(C).
    12. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    13. Giulia Valenti & Francesco Vona, 2024. "Hot Wages: How Do Heat Waves Change the Earnings Distribution?," Working Papers 2024.31, Fondazione Eni Enrico Mattei.
    14. Li, Chengzheng & Cong, Jiajia & Gu, Haiying & Zhang, Peng, 2021. "The non-linear effect of daily weather on economic performance: Evidence from China," China Economic Review, Elsevier, vol. 69(C).
    15. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.
    16. Giulia Valenti & Francesco Vona, 2024. "Hot Wages: How Do Heat Waves Change the Earnings Distribution?," Working Papers 2024.31, Fondazione Eni Enrico Mattei.
    17. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    18. Li, Xue & Smyth, Russell & Xin, Guangyi & Yao, Yao, 2023. "Warmer temperatures and energy poverty: Evidence from Chinese households," Energy Economics, Elsevier, vol. 120(C).
    19. Bui, Thanh-Huong & Bui, Ha-Phuong & Pham, Thi Mai-Anh, 2024. "Effects of temperature on job insecurity: Evidence from Australia," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 264-276.
    20. Holtermann, Linus & Rische, Marie-Christin, 2020. "The Subnational Effect of Temperature on Economic Production: A Disaggregated Analysis in European Regions," MPRA Paper 104606, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:139:y:2024:i:c:s0264999324001706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.