IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i3d10.1007_s10584-023-03500-9.html
   My bibliography  Save this article

The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?

Author

Listed:
  • Lanlan Li

    (Hefei University of Technology
    Hefei University of Technology))

  • Xinpei Song

    (Hefei University of Technology)

  • Jingjing Li

    (Hefei University of Technology
    Hefei University of Technology))

  • Ke Li

    (Hunan Normal University
    Hunan Institute for Carbon Peaking and Carbon Neutrality)

  • Jianling Jiao

    (Hefei University of Technology
    Hefei University of Technology))

Abstract

Global warming leads to the problem of climate adaptability, which makes residents’ electricity consumption behavior more sensitive to temperature. Understanding the shape of the temperature–electricity consumption response curve helps plan power investment and production and facilitates a green and low-carbon transformation of the power system. Using data regarding electricity consumption in nearly 20,000 households from seven cities in Anhui Province, China, from 2016 to 2017, this study examined the response of residential electricity consumption to temperature. The results show that there is a positive effect of the heating degree day (HDD) and cooling degree day (CDD) on residential electricity consumption. In particular, under the possible influence of the electricity price and weather factor, the electricity-temperature response curve has a “V”-shape when the average temperature is over 30 °C, and an extra day above 34 °C will increase monthly residential electricity consumption by 2.70%. The heterogeneity analysis shows that the temperature and electricity response curve have strong fluctuations under the time-of-use (TOU) pricing policy change. This implies that the price policy helps regulate the power consumption temperature response curve and thus impacts the power load.

Suggested Citation

  • Lanlan Li & Xinpei Song & Jingjing Li & Ke Li & Jianling Jiao, 2023. "The impacts of temperature on residential electricity consumption in Anhui, China: does the electricity price matter?," Climatic Change, Springer, vol. 176(3), pages 1-26, March.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:3:d:10.1007_s10584-023-03500-9
    DOI: 10.1007/s10584-023-03500-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03500-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03500-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    2. Mizobuchi, Kenichi & Takeuchi, Kenji, 2016. "Replacement or additional purchase: The impact of energy-efficient appliances on household electricity saving under public pressures," Energy Policy, Elsevier, vol. 93(C), pages 137-148.
    3. Silva, Susana & Soares, Isabel & Pinho, Carlos, 2018. "Electricity residential demand elasticities: Urban versus rural areas in Portugal," Energy, Elsevier, vol. 144(C), pages 627-632.
    4. Maximilian Auffhammer & Anin Aroonruengsawat, 2011. "Simulating the impacts of climate change, prices and population on California’s residential electricity consumption," Climatic Change, Springer, vol. 109(1), pages 191-210, December.
    5. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    6. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    7. Moral-Carcedo, Julián & Pérez-García, Julián, 2015. "Temperature effects on firms’ electricity demand: An analysis of sectorial differences in Spain," Applied Energy, Elsevier, vol. 142(C), pages 407-425.
    8. Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
    9. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
    10. Du, Kerui & Yu, Ying & Wei, Chu, 2020. "Climatic impact on China's residential electricity consumption: Does the income level matter?," China Economic Review, Elsevier, vol. 63(C).
    11. Yating Li & William A. Pizer & Libo Wu, 2019. "Climate change and residential electricity consumption in the Yangtze River Delta, China," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(2), pages 472-477, January.
    12. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    13. Fan, Jing-Li & Hu, Jia-Wei & Zhang, Xian, 2019. "Impacts of climate change on electricity demand in China: An empirical estimation based on panel data," Energy, Elsevier, vol. 170(C), pages 880-888.
    14. Ang, B.W. & Wang, H. & Ma, Xiaojing, 2017. "Climatic influence on electricity consumption: The case of Singapore and Hong Kong," Energy, Elsevier, vol. 127(C), pages 534-543.
    15. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    16. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
    17. Ihara, T. & Genchi, Y. & Sato, T. & Yamaguchi, K. & Endo, Y., 2008. "City-block-scale sensitivity of electricity consumption to air temperature and air humidity in business districts of Tokyo, Japan," Energy, Elsevier, vol. 33(11), pages 1634-1645.
    18. Zhang, Mingyang & Zhang, Kaiwen & Hu, Wuyang & Zhu, Bangzhu & Wang, Ping & Wei, Yi-Ming, 2020. "Exploring the climatic impacts on residential electricity consumption in Jiangsu, China," Energy Policy, Elsevier, vol. 140(C).
    19. Eshraghi, Hadi & Rodrigo de Queiroz, Anderson & Sankarasubramanian, A. & DeCarolis, Joseph F., 2021. "Quantification of climate-induced interannual variability in residential U.S. electricity demand," Energy, Elsevier, vol. 236(C).
    20. Chen, Haitao & Zhang, Bin & Wang, Zhaohua, 2022. "Hidden inequality in household electricity consumption: Measurement and determinants based on large-scale smart meter data," China Economic Review, Elsevier, vol. 71(C).
    21. Fung, W.Y. & Lam, K.S. & Hung, W.T. & Pang, S.W. & Lee, Y.L., 2006. "Impact of urban temperature on energy consumption of Hong Kong," Energy, Elsevier, vol. 31(14), pages 2623-2637.
    22. Hekkenberg, M. & Benders, R.M.J. & Moll, H.C. & Schoot Uiterkamp, A.J.M., 2009. "Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the Netherlands," Energy Policy, Elsevier, vol. 37(4), pages 1542-1551, April.
    23. Zhang, Peng & Zhang, Junjie & Chen, Minpeng, 2017. "Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 8-31.
    24. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    25. Alberini, Anna & Prettico, Giuseppe & Shen, Chang & Torriti, Jacopo, 2019. "Hot weather and residential hourly electricity demand in Italy," Energy, Elsevier, vol. 177(C), pages 44-56.
    26. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    27. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nie, Yan & Zhang, Guoxing & Zhong, Luhao & Su, Bin & Xi, Xi, 2024. "Urban‒rural disparities in household energy and electricity consumption under the influence of electricity price reform policies," Energy Policy, Elsevier, vol. 184(C).
    2. Tiaoye Li & Lingjiang Tao & Mi Zhang, 2024. "Projection of Non-Industrial Electricity Consumption in China’s Pearl River Delta under Global Warming Scenarios," Sustainability, MDPI, vol. 16(5), pages 1-17, February.
    3. Yiming Xiao & Zhijun Feng & Xinying Li & Shangrui Wang, 2024. "Low-carbon transition and energy poverty: quasi-natural experiment evidence from China’s low-carbon city pilot policy," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guoxing & Shen, Lin & Su, Bin, 2023. "Temperature change and daily urban-rural residential electricity consumption in northwestern China: Responsiveness and inequality," Energy Economics, Elsevier, vol. 126(C).
    2. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    3. Jones, Andrew & Nock, Destenie & Samaras, Constantine & Qiu, Yueming (Lucy) & Xing, Bo, 2023. "Climate change impacts on future residential electricity consumption and energy burden: A case study in Phoenix, Arizona," Energy Policy, Elsevier, vol. 183(C).
    4. Cuihui Xia & Tandong Yao & Weicai Wang & Wentao Hu, 2022. "Effect of Climate on Residential Electricity Consumption: A Data-Driven Approach," Energies, MDPI, vol. 15(9), pages 1-20, May.
    5. Hu, Wenxuan & Scholz, Yvonne & Yeligeti, Madhura & Deng, Ying & Jochem, Patrick, 2024. "Future electricity demand for Europe: Unraveling the dynamics of the Temperature Response Function," Applied Energy, Elsevier, vol. 368(C).
    6. Shi, Han & Wang, Bo & Qiu, Yueming Lucy & Deng, Nana & Xie, Baichen & Zhang, Bin & Ma, Shijun, 2024. "The unequal impacts of extremely high temperatures on households’ adaptive behaviors: Empirical evidence from fine-grained electricity consumption data," Energy Policy, Elsevier, vol. 190(C).
    7. Yabin Da & Bin Zeng & Jing-Li Fan & Jiawei Hu & Lanlan Li, 2023. "Heterogeneous responses to climate: evidence from residential electricity consumption," Climatic Change, Springer, vol. 176(8), pages 1-19, August.
    8. Li, Jianglong & Yang, Lisha & Long, Houyin, 2018. "Climatic impacts on energy consumption: Intensive and extensive margins," Energy Economics, Elsevier, vol. 71(C), pages 332-343.
    9. Zhang, Mingyang & Zhang, Kaiwen & Hu, Wuyang & Zhu, Bangzhu & Wang, Ping & Wei, Yi-Ming, 2020. "Exploring the climatic impacts on residential electricity consumption in Jiangsu, China," Energy Policy, Elsevier, vol. 140(C).
    10. Fazeli, Reza & Davidsdottir, Brynhildur & Hallgrimsson, Jonas Hlynur, 2016. "Residential energy demand for space heating in the Nordic countries: Accounting for interfuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1210-1226.
    11. Meixuan Teng & Hua Liao & Paul J. Burke & Tianqi Chen & Chen Zhang, 2022. "Adaptive responses: the effects of temperature levels on residential electricity use in China," Climatic Change, Springer, vol. 172(3), pages 1-20, June.
    12. Zheng, Shuguang & Huang, Guohe & Zhou, Xiong & Zhu, Xiaohang, 2020. "Climate-change impacts on electricity demands at a metropolitan scale: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 261(C).
    13. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
    14. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    15. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    16. Li, Xue & Smyth, Russell & Xin, Guangyi & Yao, Yao, 2023. "Warmer temperatures and energy poverty: Evidence from Chinese households," Energy Economics, Elsevier, vol. 120(C).
    17. Jiang, Lei & Yang, Yue & Wu, Qingyang & Yang, Linshuang & Yang, Zaoli, 2024. "Hotter days, dirtier air: The impact of extreme heat on energy and pollution intensity in China," Energy Economics, Elsevier, vol. 130(C).
    18. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    19. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    20. Deng, Nana & Wang, Bo & Wang, Zhaohua, 2023. "Does targeted poverty alleviation improve households’ adaptation to hot weathers: Evidence from electricity consumption of poor households," Energy Policy, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:3:d:10.1007_s10584-023-03500-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.