IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v6y2021i7d10.1038_s41560-021-00849-y.html
   My bibliography  Save this article

Increase in frequency of nuclear power outages due to changing climate

Author

Listed:
  • Ali Ahmad

    (Harvard University)

Abstract

Climate-related changes have already affected operating conditions for different types of energy system, in particular power plants. With more than three decades of data on changing climate, we are now in a position to empirically assess the impact of climate change on power plant operations. Such empirical assessments can provide an additional measure of the resilience of power plants going forward. Here I analyse climate-linked outages in nuclear power plants over the past three decades. My assessment shows that the average frequency of climate-induced disruptions has dramatically increased from 0.2 outage per reactor-year in the 1990s to 1.5 in the past decade. Based on the projections for adopted climate scenarios, the average annual energy loss of the global nuclear fleet is estimated to range between 0.8% and 1.4% in the mid-term (2046–2065) and 1.4% and 2.4% in the long term (2081–2100).

Suggested Citation

  • Ali Ahmad, 2021. "Increase in frequency of nuclear power outages due to changing climate," Nature Energy, Nature, vol. 6(7), pages 755-762, July.
  • Handle: RePEc:nat:natene:v:6:y:2021:i:7:d:10.1038_s41560-021-00849-y
    DOI: 10.1038/s41560-021-00849-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-021-00849-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-021-00849-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Jeong, Minsoo & You, Jung S., 2022. "Estimating the economic costs of nuclear power plant outages in a regulated market using a latent factor model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Jiang, Lei & Yang, Linshuang & Wu, Qingyang & Zhang, Xinyue, 2024. "How does extreme heat affect carbon emission intensity? Evidence from county-level data in China," Economic Modelling, Elsevier, vol. 139(C).
    4. Guénand, Yann & Gailhard, J. & Monteil, C. & Peton, P.-Y. & Martinet, C. & Collet, L. & Bono, C., 2024. "Climate change impact on nuclear power outages - Part I: A methodology to estimate hydro-thermic environmental constraints on power generation," Energy, Elsevier, vol. 307(C).
    5. Ahmad, Ali & Covatariu, Andrei & Ramana, M.V., 2023. "A stormy future? Financial impact of climate change-related disruptions on nuclear power plant owners," Utilities Policy, Elsevier, vol. 81(C).
    6. Grace Dehner & Mark K. McBeth & Rae Moss & Irene van Woerden, 2023. "A Zero-Carbon Nuclear Energy Future? Lessons Learned from Perceptions of Climate Change and Nuclear Waste," Energies, MDPI, vol. 16(4), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:6:y:2021:i:7:d:10.1038_s41560-021-00849-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.