IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03925355.html
   My bibliography  Save this paper

Induced innovation in energy technologies and systems: a review of evidence and potential implications for CO 2 mitigation

Author

Listed:
  • Michael Grubb

    (UCL - University College of London [London])

  • Paul Drummond

    (UCL - University College of London [London])

  • Alexandra Poncia

    (UCL - University College of London [London])

  • Will Mcdowall

    (UCL - University College of London [London])

  • David Popp

    (Syracuse University)

  • Sascha Samadi

    (Wuppertal Institute for Climate Environment and Energy)

  • Cristina Penasco

    (CAM - University of Cambridge [UK])

  • Kenneth Gillingham

    (Yale University [New Haven])

  • Sjak Smulders

    (Tilburg University [Tilburg] - Netspar)

  • Matthieu Glachant

    (Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres)

  • Gavin Hassall

    (University of Warwick [Coventry])

  • Emi Mizuno

    (Climate Strategies)

  • Edward Rubin

    (CMU - Carnegie Mellon University [Pittsburgh])

  • Antoine Dechezleprêtre

    (Grantham Research Institute on Climate Change and the Environment - LSE - London School of Economics and Political Science)

  • Giulia Pavan

    (Compass Lexecon)

Abstract

We conduct a systematic and interdisciplinary review of empirical literature assessing evidence on induced innovation in energy and related technologies. We explore links between demand-drivers (both market-wide and targeted); indicators of innovation (principally, patents); and outcomes (cost reduction, efficiency, and multi-sector/macro consequences). We build on existing reviews in different fields and assess over 200 papers containing original data analysis. Papers linking drivers to patents, and indicators of cumulative capacity to cost reductions (experience curves), dominate the literature. The former does not directly link patents to outcomes; the latter does not directly test for the causal impact of on cost reductions. Diverse other literatures provide additional evidence concerning the links between deployment, innovation activities, and outcomes. We derive three main conclusions. (a) Demand-pull forces enhance patenting; econometric studies find positive impacts in industry, electricity and transport sectors in all but a few specific cases. This applies to all drivers—general energy prices, carbon prices, and targeted interventions that build markets. (b) Technology costs decline with cumulative investment for almost every technology studied across all time periods, when controlled for other factors. Numerous lines of evidence point to dominant causality from at-scale deployment (prior to self-sustaining diffusion) to cost reduction in this relationship. (c) Overall innovation is cumulative, multi-faceted, and self-reinforcing in its direction (path-dependent). We conclude with brief observations on implications for modelling and policy. In interpreting these results, we suggest distinguishing the economics of active deployment, from more passive diffusion processes, and draw the following implications. There is a role for policy diversity and experimentation, with evaluation of potential gains from innovation in the broadest sense. Consequently, endogenising innovation in large-scale models is important for deriving policy-relevant conclusions. Finally, seeking to relate quantitative economic evaluation to the qualitative socio-technical transitions literatures could be a fruitful area for future research.

Suggested Citation

  • Michael Grubb & Paul Drummond & Alexandra Poncia & Will Mcdowall & David Popp & Sascha Samadi & Cristina Penasco & Kenneth Gillingham & Sjak Smulders & Matthieu Glachant & Gavin Hassall & Emi Mizuno &, 2021. "Induced innovation in energy technologies and systems: a review of evidence and potential implications for CO 2 mitigation," Post-Print hal-03925355, HAL.
  • Handle: RePEc:hal:journl:hal-03925355
    DOI: 10.1088/1748-9326/abde07
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vincenzi, Marco & Ozabaci, Deniz, 2017. "The Effect of Public Policies on Inducing Technological Change in Solar Energy," Agricultural and Resource Economics Review, Cambridge University Press, vol. 46(1), pages 44-72, April.
    2. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    3. Matsuo, Yuhji & Nei, Hisanori, 2019. "An analysis of the historical trends in nuclear power plant construction costs: The Japanese experience," Energy Policy, Elsevier, vol. 124(C), pages 180-198.
    4. James M. Griffin & Craig T. Schulman, 2005. "Price Asymmetry in Energy Demand Models: A Proxy for Energy-Saving Technical Change?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-22.
    5. Cristina Peñasco & Laura Díaz Anadón & Elena Verdolini, 2021. "Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments," Nature Climate Change, Nature, vol. 11(3), pages 257-265, March.
    6. Hassler, John & Olovsson, Conny, 2012. "Energy-Saving Technical Change," CEPR Discussion Papers 9177, C.E.P.R. Discussion Papers.
    7. Tang, Tian, 2018. "Explaining technological change in the US wind industry: Energy policies, technological learning, and collaboration," Energy Policy, Elsevier, vol. 120(C), pages 197-212.
    8. Elena Verdolini & Marzio Galeotti, 2009. "At Home and Abroad: An Empirical Analysis of Innovation and Diffusion in Energy-Efficient Technologies," Working Papers 2009.123, Fondazione Eni Enrico Mattei.
    9. Ivan Haščič & Mauro Migotto, 2015. "Measuring environmental innovation using patent data," OECD Environment Working Papers 89, OECD Publishing.
    10. Peñasco, Cristina & del Río, Pablo & Romero-Jordán, Desiderio, 2017. "Analysing the Role of International Drivers for Eco-innovators," Journal of International Management, Elsevier, vol. 23(1), pages 56-71.
    11. Jamasb, Tooraj & Pollitt, Michael G., 2015. "Why and how to subsidise energy R+D: Lessons from the collapse and recovery of electricity innovation in the UK," Energy Policy, Elsevier, vol. 83(C), pages 197-205.
    12. Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
    13. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    14. Shunsuke Managi & SJames J. Opaluch & Di Jin & Thomas A. Grigalunas, 2005. "Environmental Regulations and Technological Change in the Offshore Oil and Gas Industry," Land Economics, University of Wisconsin Press, vol. 81(2).
    15. Veugelers, Reinhilde, 2012. "Which policy instruments to induce clean innovating?," Research Policy, Elsevier, vol. 41(10), pages 1770-1778.
    16. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    17. Partridge, Ian, 2013. "Renewable electricity generation in India—A learning rate analysis," Energy Policy, Elsevier, vol. 60(C), pages 906-915.
    18. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    19. Jamasb, Tooraj & Pollitt, Michael, 2008. "Liberalisation and R&D in network industries: The case of the electricity industry," Research Policy, Elsevier, vol. 37(6-7), pages 995-1008, July.
    20. Zheng-Xia He & Shi-Chun Xu & Qin-Bin Li & Bin Zhao, 2018. "Factors That Influence Renewable Energy Technological Innovation in China: A Dynamic Panel Approach," Sustainability, MDPI, vol. 10(1), pages 1-30, January.
    21. van der Zwaan, Bob & Rivera-Tinoco, Rodrigo & Lensink, Sander & van den Oosterkamp, Paul, 2012. "Cost reductions for offshore wind power: Exploring the balance between scaling, learning and R&D," Renewable Energy, Elsevier, vol. 41(C), pages 389-393.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    2. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    3. Francesco Nicolli & Francesco Vona & Lionel Nesta, 2012. "Determinants of Renewable Energy Innovation: Environmental Policies vs. Market Regulation," Working Papers 201204, University of Ferrara, Department of Economics.
    4. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    5. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    6. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    7. Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.
    8. David Popp & Francesco Vona & Myriam Grégoire-Zawilski & Giovanni Marin, 2024. "The Next Wave of Energy Innovation: Which Technologies? Which Skills?," Review of Environmental Economics and Policy, University of Chicago Press, vol. 18(1), pages 45-65.
    9. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    10. He, Zhengxia & Cao, Changshuai & Kuai, Leyi & Zhou, Yanqing & Wang, Jianming, 2022. "Impact of policies on wind power innovation at different income levels: Regional differences in China based on dynamic panel estimation," Technology in Society, Elsevier, vol. 71(C).
    11. David Popp, 2015. "Using Scientific Publications to Evaluate Government R&D Spending: The Case of Energy," NBER Working Papers 21415, National Bureau of Economic Research, Inc.
    12. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    13. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    14. Iman Miremadi & Yadollah Saboohi, 2018. "Planning for Investment in Energy Innovation: Developing an Analytical Tool to Explore the Impact of Knowledge Flow," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 7-19.
    15. Jung‐Ah Hwang & Yeonbae Kim, 2017. "Effects of Environmental Regulations on Trade Flow in Manufacturing Sectors: Comparison of Static and Dynamic Effects of Environmental Regulations," Business Strategy and the Environment, Wiley Blackwell, vol. 26(5), pages 688-706, July.
    16. Palage, Kristoffer & Lundmark, Robert & Söderholm, Patrik, 2019. "The impact of pilot and demonstration plants on innovation: The case of advanced biofuel patenting in the European Union," International Journal of Production Economics, Elsevier, vol. 210(C), pages 42-55.
    17. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    18. David Popp, 2015. "Using Scientific Publications to Evaluate Government R&D Spending: The Case of Energy," CESifo Working Paper Series 5442, CESifo.
    19. Kruse, Juergen & Wetzel, Heike, 2014. "Energy prices, technological knowledge and green energy innovation: A dynamic panel analysis of patent counts," EWI Working Papers 2014-12, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    21. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    22. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    23. Sung, Bongsuk & Soh, Jin Young & Park, Chun Gun, 2022. "Comparing government support, firm heterogeneity, and inter-firm spillovers for productivity enhancement: Evidence from the Korean solar energy technology industry," Energy, Elsevier, vol. 246(C).
    24. David Popp, 2019. "Environmental Policy and Innovation: A Decade of Research," NBER Working Papers 25631, National Bureau of Economic Research, Inc.

    More about this item

    JEL classification:

    • N0 - Economic History - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03925355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.