IDEAS home Printed from https://ideas.repec.org/p/hhs/ratioi/0351.html
   My bibliography  Save this paper

Ratio Working Paper No. 351: Knowledge Spillovers in the Solar energy sector

Author

Listed:

Abstract

The purpose of this paper is to provide an analysis of the existence and possible direction of international knowledge spillovers in the solar energy sector. Specifically, the paper investigates how the accumulation of solar energy patents and public R&D spending affected the output of domestic granted solar energy patents. The econometric analysis relies on a data set consisting of most of the OECD countries plus China and analyzes two time periods; from 1990 to 2014 and the years 2000 to 2014. To analyze the data material, a Poisson fixed-effects estimator based on the Hausman, Hall and Griliches (1984) method was used. The empirical findings suggest that the domestic accumulation of patents and R&D is important for the potential development of new ones. Indeed, early investment in specific technology can be an indicator of future leadership in that field.

Suggested Citation

  • Grafström, Jonas, 2021. "Ratio Working Paper No. 351: Knowledge Spillovers in the Solar energy sector," Ratio Working Papers 351, The Ratio Institute.
  • Handle: RePEc:hhs:ratioi:0351
    Note: https://cms.ratio.se/app/uploads/2021/12/working-paper-351.solar-spillover.jg_.pdf
    as

    Download full text from publisher

    File URL: https://cms.ratio.se/app/uploads/2021/12/working-paper-351.solar-spillover.jg_.pdf
    File Function: Ratio Working Paper No. 351
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
    2. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
    3. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    4. Schmidt-Ehmcke, Jens & Zloczysti, Petra & Braun, Frauke G, 2010. "Innovative Activity in Wind and Solar Technology: Empirical Evidence on Knowledge Spillovers Using Patent Data," CEPR Discussion Papers 7865, C.E.P.R. Discussion Papers.
    5. Luigi Aldieri & Michele Cincera, 2009. "Geographic and technological R&D spillovers within the triad: micro evidence from US patents," The Journal of Technology Transfer, Springer, vol. 34(2), pages 196-211, April.
    6. Jaffe Adam B. & Stavins Robert N., 1995. "Dynamic Incentives of Environmental Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 43-63, November.
    7. Yasser Abdih & Frederick Joutz, 2006. "Relating the Knowledge Production Function to Total Factor Productivity: An Endogenous Growth Puzzle," IMF Staff Papers, Palgrave Macmillan, vol. 53(2), pages 1-3.
    8. Ibenholt, Karin, 2002. "Explaining learning curves for wind power," Energy Policy, Elsevier, vol. 30(13), pages 1181-1189, October.
    9. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    10. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 17-45, National Bureau of Economic Research, Inc.
    11. William Greene, 2007. "Fixed and Random Effects Models for Count Data," Working Papers 07-15, New York University, Leonard N. Stern School of Business, Department of Economics.
    12. Nick Johnstone & Ivan Haščič & Julie Poirier & Marion Hemar & Christian Michel, 2012. "Environmental policy stringency and technological innovation: evidence from survey data and patent counts," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2157-2170, June.
    13. Andre Jungmittag, 2004. "Innovations, technological specialisation and economic growth in the EU," International Economics and Economic Policy, Springer, vol. 1(2), pages 247-273, January.
    14. Garrone, Paola & Grilli, Luca, 2010. "Is there a relationship between public expenditures in energy R&D and carbon emissions per GDP? An empirical investigation," Energy Policy, Elsevier, vol. 38(10), pages 5600-5613, October.
    15. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    16. Marc Baudry & Clément Bonnet, 2016. "Demand pull isntruments and the development of wind power in Europe: A counter-factual analysis," Working Papers 1607, Chaire Economie du climat.
    17. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    18. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2000. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not)," NBER Working Papers 7552, National Bureau of Economic Research, Inc.
    19. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    20. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    21. Costantini, Valeria & Crespi, Francesco, 2008. "Environmental regulation and the export dynamics of energy technologies," Ecological Economics, Elsevier, vol. 66(2-3), pages 447-460, June.
    22. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    23. repec:fth:harver:1473 is not listed on IDEAS
    24. Corradini, Massimiliano & Costantini, Valeria & Mancinelli, Susanna & Mazzanti, Massimiliano, 2014. "Unveiling the dynamic relation between R&D and emission abatement," Ecological Economics, Elsevier, vol. 102(C), pages 48-59.
    25. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    26. Zvi Griliches, 1998. "R&D and Productivity: The Econometric Evidence," NBER Books, National Bureau of Economic Research, Inc, number gril98-1.
    27. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    28. Fagerberg, Jan, 1988. "International Competitiveness," Economic Journal, Royal Economic Society, vol. 98(391), pages 355-374, June.
    29. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    30. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    31. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    32. Hans-Jurgen Engelbrecht, 2002. "Human capital and international knowledge spillovers in TFP growth of a sample of developing countries: an exploration of alternative approaches," Applied Economics, Taylor & Francis Journals, vol. 34(7), pages 831-841.
    33. Giovanni Dosi & Christopher Freeman & Richard Nelson & Gerarld Silverberg & Luc Soete (ed.), 1988. "Technical Change and Economic Theory," LEM Book Series, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy, number dosietal-1988, November.
    34. Mancusi, Maria Luisa, 2008. "International spillovers and absorptive capacity: A cross-country cross-sector analysis based on patents and citations," Journal of International Economics, Elsevier, vol. 76(2), pages 155-165, December.
    35. Johnstone, Nick & Managi, Shunsuke & Rodríguez, Miguel Cárdenas & Haščič, Ivan & Fujii, Hidemichi & Souchier, Martin, 2017. "Environmental policy design, innovation and efficiency gains in electricity generation," Energy Economics, Elsevier, vol. 63(C), pages 106-115.
    36. Hu, Albert Guangzhou & Jefferson, Gary H., 2009. "A great wall of patents: What is behind China's recent patent explosion?," Journal of Development Economics, Elsevier, vol. 90(1), pages 57-68, September.
    37. Pakes, Ariel & Griliches, Zvi, 1980. "Patents and R&D at the firm level: A first report," Economics Letters, Elsevier, vol. 5(4), pages 377-381.
    38. Luigi Aldieri & Jonas Grafström & Concetto Paolo Vinci, 2021. "The Effect of Marshallian and Jacobian Knowledge Spillovers on Jobs in the Solar, Wind and Energy Efficiency Sector," Energies, MDPI, vol. 14(14), pages 1-16, July.
    39. Caroline Hussler, 2004. "Culture and knowledge spillovers in Europe : new perspectives for innovation and convergence policies ?," Post-Print hal-00278985, HAL.
    40. Cristiano Antonelli & Francesco Quatraro, 2010. "The effects of biased technological change on total factor productivity: empirical evidence from a sample of OECD countries," The Journal of Technology Transfer, Springer, vol. 35(4), pages 361-383, August.
    41. Caroline Hussler, 2004. "Culture and knowledge spillovers in Europe: New perspectives for innovation and convergence policies?," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 13(6), pages 523-541.
    42. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    43. Fagerberg, Jan, 1988. "International Competitiveness: Errata," Economic Journal, Royal Economic Society, vol. 98(393), pages 1203-1203, December.
    44. Krammer, Sorin M.S., 2009. "Drivers of national innovation in transition: Evidence from a panel of Eastern European countries," Research Policy, Elsevier, vol. 38(5), pages 845-860, June.
    45. Tang, Tian, 2018. "Explaining technological change in the US wind industry: Energy policies, technological learning, and collaboration," Energy Policy, Elsevier, vol. 120(C), pages 197-212.
    46. Griliches, Zvi, 1998. "R&D and Productivity," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226308869.
    47. Julie Poirier & Nick Johnstone & Ivan Haščič & Jérôme Silva, 2015. "The Benefits of International Co-authorship in Scientific Papers: The Case of Wind Energy Technologies," OECD Environment Working Papers 81, OECD Publishing.
    48. Enrico Botta & Tomasz Koźluk, 2014. "Measuring Environmental Policy Stringency in OECD Countries: A Composite Index Approach," OECD Economics Department Working Papers 1177, OECD Publishing.
    49. de Vries, F.P. & Withagen, C.A.A.M., 2005. "Innovation and environmental stringency : The case of sulfur dioxide abatement," Other publications TiSEM 9f3f79ab-2646-4f72-845c-4, Tilburg University, School of Economics and Management.
    50. Massimiliano Corradini & Valeria Costantini & Susanna Mancinelli & Massimiliano Mazzanti, 2015. "Interacting innovation investments and environmental performances: a dynamic impure public good model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 109-129, January.
    51. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Grafström, 2018. "Divergence of renewable energy invention efforts in Europe: an econometric analysis based on patent counts," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 829-859, October.
    2. Grafström, Jonas, 2017. "An Econometric Analysis of Divergence of Renewable Energy Invention Efforts in Europe," Ratio Working Papers 295, The Ratio Institute.
    3. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    4. Grafström, Jonas & Jaunky, Vishal, 2017. "Convergence of Incentive Capabilities within the European Union," Ratio Working Papers 301, The Ratio Institute.
    5. Grafström, Jonas & Poudineh, Rahmat, 2023. "Invention and Diffusion in the Solar Power Sector," Ratio Working Papers 364, The Ratio Institute.
    6. Grafström, Jonas & Söderholm, Patrik & Gawel, Erik & Lehmann, Paul & Strunz, Sebastian, 2017. "Knowledge Accumulation from Public Renewable Energy R&D in the European Union: Converging or Diverging Trends?," Ratio Working Papers 292, The Ratio Institute.
    7. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
    8. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. Quatraro, Francesco & Scandura, Alessandra, 2019. "Academic Inventors and the Antecedents of Green Technologies. A Regional Analysis of Italian Patent Data," Ecological Economics, Elsevier, vol. 156(C), pages 247-263.
    10. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    11. Corradini, Massimiliano & Costantini, Valeria & Mancinelli, Susanna & Mazzanti, Massimiliano, 2014. "Unveiling the dynamic relation between R&D and emission abatement," Ecological Economics, Elsevier, vol. 102(C), pages 48-59.
    12. Ghisetti,Claudia & Marzucchi,Alberto & Montresor,Sandro, 2013. "Does external knowledge affect environmental innovations? An empirical investigation of eleven European countries," INGENIO (CSIC-UPV) Working Paper Series 201301, INGENIO (CSIC-UPV), revised 23 May 2013.
    13. Tomasz Kijek & Arkadiusz Kijek & Piotr Bolibok & Anna Matras-Bolibok, 2021. "The Patterns of Energy Innovation Convergence across European Countries," Energies, MDPI, vol. 14(10), pages 1-17, May.
    14. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    15. Brian Chi-ang Lin & Siqi Zheng & Nicolò Barbieri & Claudia Ghisetti & Marianna Gilli & Giovanni Marin & Francesco Nicolli, 2016. "A Survey Of The Literature On Environmental Innovation Based On Main Path Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 596-623, July.
    16. Orsatti, Gianluca & Quatraro, Francesco & Pezzoni, Michele, 2020. "The antecedents of green technologies: The role of team-level recombinant capabilities," Research Policy, Elsevier, vol. 49(3).
    17. Ghisetti, Claudia & Marzucchi, Alberto & Montresor, Sandro, 2015. "The open eco-innovation mode. An empirical investigation of eleven European countries," Research Policy, Elsevier, vol. 44(5), pages 1080-1093.
    18. Aldieri, Luigi & Grafström, Jonas & Paolo Vinci, Concetto, 2020. "Job Creation in the Wind Power Sector Through Marshallian and Jacobian Knowledge Spillovers," Ratio Working Papers 340, The Ratio Institute.
    19. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    20. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.

    More about this item

    Keywords

    Solar PV; R&D; Spillovers; Patents;
    All these keywords.

    JEL classification:

    • E61 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Policy Objectives; Policy Designs and Consistency; Policy Coordination
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:ratioi:0351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin Korpi (email available below). General contact details of provider: https://edirc.repec.org/data/ratiose.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.