IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v64y2016i1p52-66.html
   My bibliography  Save this article

Efficient Feed-In-Tariff Policies for Renewable Energy Technologies

Author

Listed:
  • Saed Alizamir

    (Yale School of Management, New Haven, Connecticut 06511)

  • Francis de Véricourt

    (ESMT European School of Management and Technology, 10178 Berlin, Germany)

  • Peng Sun

    (Fuqua School of Business, Duke University, Durham, North Carolina 27708)

Abstract

Feed-in-tariff (FIT) policies aim at driving down the cost of renewable energy by fostering learning and accelerating the diffusion of green technologies. Under FIT mechanisms, governments purchase green energy at tariffs that are set above market price. The success or failure of FIT policies, in turn, critically depend on how these tariffs are determined and adjusted over time. This paper provides insights into designing cost-efficient and socially optimal FIT programs. Our modeling framework captures key market dynamics as well as investors’ strategic behavior. In this framework, we establish that the current practice of maintaining constant profitability is theoretically rarely optimal. By contrast, we characterize a no-delay region in the problem’s parameters, such that profitability should strictly decrease over time if the diffusion and learning rates belong to this region. In this case, investors never strategically postpone their investment to a later period. When the diffusion and learning rates fall outside the region, profitability should increase at least temporarily over some time periods and strategic delays occur. The presence of strategic delays, however, makes the practical problem of computing optimal FIT schedules very difficult. To address this issue, the regulator may focus on policies that disincentivize investors to postpone their investment. With this additional constraint, a constant profitability policy is optimal if and only if the diffusion and learning rates fall outside the no-delay region. This provides partial justifications for current FIT implementations.

Suggested Citation

  • Saed Alizamir & Francis de Véricourt & Peng Sun, 2016. "Efficient Feed-In-Tariff Policies for Renewable Energy Technologies," Operations Research, INFORMS, vol. 64(1), pages 52-66, February.
  • Handle: RePEc:inm:oropre:v:64:y:2016:i:1:p:52-66
    DOI: 10.1287/opre.2015.1460
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1460
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arthur van Benthem & Kenneth Gillingham & James Sweeney, 2008. "Learning-by-Doing and the Optimal Solar Policy in California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 131-152.
    2. Stefan Ambec & Claude Crampes, 2010. "Electricity Production with Intermittent Sources of Energy," LERNA Working Papers 10.07.313, LERNA, University of Toulouse.
    3. Wand, Robert & Leuthold, Florian, 2011. "Feed-in tariffs for photovoltaics: Learning by doing in Germany?," Applied Energy, Elsevier, vol. 88(12), pages 4387-4399.
    4. Alfredo Garcia & Juan Alzate & Jorge Barrera, 2012. "Regulatory design and incentives for renewable energy," Journal of Regulatory Economics, Springer, vol. 41(3), pages 315-336, June.
    5. Mihai Banciu & Prakash Mirchandani, 2013. "Technical Note—New Results Concerning Probability Distributions with Increasing Generalized Failure Rates," Operations Research, INFORMS, vol. 61(4), pages 925-931, August.
    6. Xuanming Su, 2010. "Intertemporal Pricing and Consumer Stockpiling," Operations Research, INFORMS, vol. 58(4-part-2), pages 1133-1147, August.
    7. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    8. David F. Drake, 2011. "Carbon Tariffs: Impacts on Technology Choice, Regional Competitiveness, and Global Emissions," Harvard Business School Working Papers 12-029, Harvard Business School.
    9. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    10. Ambec, Stefan & Crampes, Claude, 2010. "Electricity Production with Intermittent Sources," IDEI Working Papers 608, Institut d'Économie Industrielle (IDEI), Toulouse.
    11. Edward C. Prescott & Rajnish Mehra, 2005. "Recursive Competitive Equilibrium: The Case Of Homogeneous Households," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 11, pages 357-371, World Scientific Publishing Co. Pte. Ltd..
    12. Trichy V. Krishnan & Frank M. Bass & Dipak C. Jain, 1999. "Optimal Pricing Strategy for New Products," Management Science, INFORMS, vol. 45(12), pages 1650-1663, December.
    13. Bolinger, Mark & Wiser, Ryan, 2009. "Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth," Energy Policy, Elsevier, vol. 37(3), pages 1061-1071, March.
    14. Erica L. Plambeck & Terry A. Taylor, 2013. "On the Value of Input Efficiency, Capacity Efficiency, and the Flexibility to Rebalance Them," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 630-639, October.
    15. Jager, Wander, 2006. "Stimulating the diffusion of photovoltaic systems: A behavioural perspective," Energy Policy, Elsevier, vol. 34(14), pages 1935-1943, September.
    16. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    17. Lars Ljungqvist & Thomas J. Sargent, 2004. "Recursive Macroeconomic Theory, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 026212274x, April.
    18. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    19. Wenbin Wang & Mark E. Ferguson & Shanshan Hu & Gilvan C. Souza, 2013. "Dynamic Capacity Investment with Two Competing Technologies," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 616-629, October.
    20. Martin A. Lariviere & Evan L. Porteus, 2001. "Selling to the Newsvendor: An Analysis of Price-Only Contracts," Manufacturing & Service Operations Management, INFORMS, vol. 3(4), pages 293-305, May.
    21. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    22. Rao, K. Usha & Kishore, V.V.N., 2010. "A review of technology diffusion models with special reference to renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1070-1078, April.
    23. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    24. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    25. Fouquet, Doerte & Johansson, Thomas B., 2008. "European renewable energy policy at crossroads--Focus on electricity support mechanisms," Energy Policy, Elsevier, vol. 36(11), pages 4079-4092, November.
    26. Shlomo Kalish & Gary L. Lilien, 1983. "Optimal Price Subsidy Policy for Accelerating the Diffusion Of Innovation," Marketing Science, INFORMS, vol. 2(4), pages 407-420.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Blommestein, Kevin & Daim, Tugrul U. & Cho, Yonghee & Sklar, Paul, 2018. "Structuring financial incentives for residential solar electric systems," Renewable Energy, Elsevier, vol. 115(C), pages 28-40.
    2. Ding, Hao & Zhou, Dequn & Zhou, P., 2020. "Optimal policy supports for renewable energy technology development: A dynamic programming model," Energy Economics, Elsevier, vol. 92(C).
    3. Yang Liu and Taoyuan Wei, 2016. "Market and Non-market Policies for Renewable Energy Diffusion: A Unifying Framework and Empirical Evidence from Chinas Wind Power Sector," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    4. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    5. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
    6. Mahmoud Tnani & Hafedh Ben Abdennebi, 2015. "A Model of Subsidies and Feed-In Tariffs for the Deployment of Photovoltaic Energy in the Residential Sector in Tunisia," International Journal of Management Sciences, Research Academy of Social Sciences, vol. 6(5), pages 235-259.
    7. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2022. "Roles of diffusion patterns, technological progress, and environmental benefits in determining optimal renewable subsidies in the US," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    8. Pettersson, Fredrik, 2007. "Carbon pricing and the diffusion of renewable power generation in Eastern Europe: A linear programming approach," Energy Policy, Elsevier, vol. 35(4), pages 2412-2425, April.
    9. Arthur van Benthem & Kenneth Gillingham & James Sweeney, 2008. "Learning-by-Doing and the Optimal Solar Policy in California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 131-152.
    10. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    11. Chen, Huayi & Ma, Tieju, 2014. "Technology adoption with limited foresight and uncertain technological learning," European Journal of Operational Research, Elsevier, vol. 239(1), pages 266-275.
    12. Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
    13. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    15. Desroches, Louis-Benoit & Garbesi, Karina & Kantner, Colleen & Van Buskirk, Robert & Yang, Hung-Chia, 2013. "Incorporating experience curves in appliance standards analysis," Energy Policy, Elsevier, vol. 52(C), pages 402-416.
    16. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    17. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    18. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2021. "What is the optimal subsidy for residential solar?," Energy Policy, Elsevier, vol. 155(C).
    19. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    20. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:64:y:2016:i:1:p:52-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.