IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v87y2015icp73-83.html
   My bibliography  Save this article

A Bayesian hierarchical model for estimating and partitioning Bernstein polynomial density functions

Author

Listed:
  • Gard, Charlotte C.
  • Brown, Elizabeth R.

Abstract

A Bayesian hierarchical model for simultaneously estimating and partitioning probability density functions is presented. Individual density functions are flexibly modeled using Bernstein densities, which are mixtures of beta densities whose parameters depend only on the number of mixture components. A prior distribution is placed on the number of mixture components, and the mixture weights are expressed as increments of a distribution function G. A Dirichlet process prior is placed on G and the parameters of the Dirichlet process, the baseline distribution and the precision parameter, are treated as random. A mixture of a product of beta densities is used to partition subjects into groups, with subjects in the same group sharing information via a common baseline distribution. Inference is carried out using Markov chain Monte Carlo. A computing algorithm based on the constructive definition of the Dirichlet process is offered, for both a fixed number of groups and an unknown number of groups. When the number of groups is unknown, a birth–death algorithm is used to make inference regarding the number of groups. The model is demonstrated using radiologist-specific distributions of percent mammographic density.

Suggested Citation

  • Gard, Charlotte C. & Brown, Elizabeth R., 2015. "A Bayesian hierarchical model for estimating and partitioning Bernstein polynomial density functions," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 73-83.
  • Handle: RePEc:eee:csdana:v:87:y:2015:i:c:p:73-83
    DOI: 10.1016/j.csda.2015.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315000274
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karabatsos, George & Walker, Stephen G., 2007. "Bayesian nonparametric inference of stochastically ordered distributions, with Pólya trees and Bernstein polynomials," Statistics & Probability Letters, Elsevier, vol. 77(9), pages 907-913, May.
    2. Jara, Alejandro & Hanson, Timothy & Quintana, Fernando A. & Müller, Peter & Rosner, Gary L., 2011. "DPpackage: Bayesian Semi- and Nonparametric Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i05).
    3. Rodríguez, Abel & Dunson, David B & Gelfand, Alan E, 2008. "The Nested Dirichlet Process," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1131-1154.
    4. Nidhan Choudhuri & Subhashis Ghosal & Anindya Roy, 2004. "Bayesian Estimation of the Spectral Density of a Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1050-1059, December.
    5. Sonia Petrone, 1999. "Random Bernstein Polynomials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 373-393, September.
    6. Chuan Zhou & Jon Wakefield, 2006. "A Bayesian Mixture Model for Partitioning Gene Expression Data," Biometrics, The International Biometric Society, vol. 62(2), pages 515-525, June.
    7. Sonia Petrone & Larry Wasserman, 2002. "Consistency of Bernstein polynomial posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(1), pages 79-100, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yanyun & Ausín Olivera, María Concepción & Wiper, Michael Peter, 2013. "Bayesian multivariate Bernstein polynomial density estimation," DES - Working Papers. Statistics and Econometrics. WS ws131211, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    3. Andrés F. Barrientos & Alejandro Jara & Fernando A. Quintana, 2017. "Fully Nonparametric Regression for Bounded Data Using Dependent Bernstein Polynomials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 806-825, April.
    4. Brian Hart & Michele Guindani & Stephen Malone & Mark Fiecas, 2022. "A nonparametric Bayesian model for estimating spectral densities of resting‐state EEG twin data," Biometrics, The International Biometric Society, vol. 78(1), pages 313-323, March.
    5. Yuhui Chen & Timothy Hanson & Jiajia Zhang, 2014. "Accelerated hazards model based on parametric families generalized with Bernstein polynomials," Biometrics, The International Biometric Society, vol. 70(1), pages 192-201, March.
    6. Macaro, Christian, 2010. "Bayesian non-parametric signal extraction for Gaussian time series," Journal of Econometrics, Elsevier, vol. 157(2), pages 381-395, August.
    7. Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    8. Carnicero, José Antonio, 2010. "Circular Bernstein polynomial distributions," DES - Working Papers. Statistics and Econometrics. WS ws102511, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Burda, Martin & Prokhorov, Artem, 2014. "Copula based factorization in Bayesian multivariate infinite mixture models," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 200-213.
    10. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    11. Lorenzo Trippa & Paolo Bulla & Sonia Petrone, 2011. "Extended Bernstein prior via reinforced urn processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 481-496, June.
    12. Sonia Petrone & Piero Veronese, 2002. "Non parametric mixture priors based on an exponential random scheme," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(1), pages 1-20, February.
    13. Kim, Dong-Hyuk, 2013. "Optimal choice of a reserve price under uncertainty," International Journal of Industrial Organization, Elsevier, vol. 31(5), pages 587-602.
    14. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    15. Christian Macaro & Raquel Prado, 2014. "Spectral Decompositions of Multiple Time Series: A Bayesian Non-parametric Approach," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 105-129, January.
    16. Li, Yunzhe & Lee, Juhee & Kottas, Athanasios, 2024. "Bayesian nonparametric Erlang mixture modeling for survival analysis," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    17. Peter Müeller & Fernando A. Quintana & Garritt Page, 2018. "Nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 175-206, June.
    18. Yao Luo & Peijun Sang & Ruli Xiao, 2024. "Order Statistics Approaches to Unobserved Heterogeneity in Auctions," Working Papers tecipa-776, University of Toronto, Department of Economics.
    19. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    20. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:87:y:2015:i:c:p:73-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.