IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v191y2024ics0167947323001858.html
   My bibliography  Save this article

Bayesian nonparametric Erlang mixture modeling for survival analysis

Author

Listed:
  • Li, Yunzhe
  • Lee, Juhee
  • Kottas, Athanasios

Abstract

Development of a flexible Erlang mixture model for survival analysis is introduced. The model for the survival density is built from a structured mixture of Erlang densities, mixing on the integer shape parameter with a common scale parameter. The mixture weights are constructed through increments of a distribution function on the positive real line, which is assigned a Dirichlet process prior. The model has a relatively simple structure, balancing flexibility with efficient posterior computation. Moreover, it implies a mixture representation for the hazard function that involves time-dependent mixture weights, thus offering a general approach to hazard estimation. Extension of the model is made to accommodate survival responses corresponding to multiple experimental groups, using a dependent Dirichlet process prior for the group-specific distributions that define the mixture weights. Model properties, prior specification, and posterior simulation are discussed, and the methodology is illustrated with synthetic and real data examples.

Suggested Citation

  • Li, Yunzhe & Lee, Juhee & Kottas, Athanasios, 2024. "Bayesian nonparametric Erlang mixture modeling for survival analysis," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:csdana:v:191:y:2024:i:c:s0167947323001858
    DOI: 10.1016/j.csda.2023.107874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323001858
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Richardson & Athanasios Kottas & Bruno Sansó, 2020. "Spatiotemporal modelling using integro‐difference equations with bivariate stable kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1371-1392, December.
    2. Maria De Iorio & Wesley O. Johnson & Peter Müller & Gary L. Rosner, 2009. "Bayesian Nonparametric Nonproportional Hazards Survival Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 762-771, September.
    3. Simon Lee & X. Lin, 2010. "Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 107-130.
    4. A. Antoniadis & G. Grégoire & G. Nason, 1999. "Density and hazard rate estimation for right‐censored data by using wavelet methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 63-84.
    5. Sonia Petrone, 1999. "Random Bernstein Polynomials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 373-393, September.
    6. Yanbing Zheng & Jun Zhu & Anindya Roy, 2010. "Nonparametric Bayesian inference for the spectral density function of a random field," Biometrika, Biometrika Trust, vol. 97(1), pages 238-245.
    7. Jara, Alejandro & Hanson, Timothy & Quintana, Fernando A. & Müller, Peter & Rosner, Gary L., 2011. "DPpackage: Bayesian Semi- and Nonparametric Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i05).
    8. Andrés F. Barrientos & Alejandro Jara & Fernando A. Quintana, 2017. "Fully Nonparametric Regression for Bounded Data Using Dependent Bernstein Polynomials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 806-825, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés F. Barrientos & Alejandro Jara & Fernando A. Quintana, 2017. "Fully Nonparametric Regression for Bounded Data Using Dependent Bernstein Polynomials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 806-825, April.
    2. repec:cte:wsrepe:ws131211 is not listed on IDEAS
    3. Zheng, Yanbing, 2011. "Shape restriction of the multi-dimensional Bernstein prior for density functions," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 647-651, June.
    4. Burda, Martin & Prokhorov, Artem, 2014. "Copula based factorization in Bayesian multivariate infinite mixture models," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 200-213.
    5. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    6. Richardson, Robert & Hartman, Brian, 2018. "Bayesian nonparametric regression models for modeling and predicting healthcare claims," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 1-8.
    7. Gard, Charlotte C. & Brown, Elizabeth R., 2015. "A Bayesian hierarchical model for estimating and partitioning Bernstein polynomial density functions," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 73-83.
    8. Luca Bagnato & Antonio Punzo, 2013. "Finite mixtures of unimodal beta and gamma densities and the $$k$$ -bumps algorithm," Computational Statistics, Springer, vol. 28(4), pages 1571-1597, August.
    9. Hanson, Timothy E. & de Carvalho, Miguel & Chen, Yuhui, 2017. "Bernstein polynomial angular densities of multivariate extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 60-66.
    10. Brian Hart & Michele Guindani & Stephen Malone & Mark Fiecas, 2022. "A nonparametric Bayesian model for estimating spectral densities of resting‐state EEG twin data," Biometrics, The International Biometric Society, vol. 78(1), pages 313-323, March.
    11. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    12. Im, Yunju & Tan, Aixin, 2021. "Bayesian subgroup analysis in regression using mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    13. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    14. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    15. Yuhui Chen & Timothy Hanson & Jiajia Zhang, 2014. "Accelerated hazards model based on parametric families generalized with Bernstein polynomials," Biometrics, The International Biometric Society, vol. 70(1), pages 192-201, March.
    16. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    17. Karabatsos, George & Walker, Stephen G., 2007. "Bayesian nonparametric inference of stochastically ordered distributions, with Pólya trees and Bernstein polynomials," Statistics & Probability Letters, Elsevier, vol. 77(9), pages 907-913, May.
    18. Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    19. Luis Rincón & David J. Santana, 2022. "Ruin Probability for Finite Erlang Mixture Claims Via Recurrence Sequences," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2213-2236, September.
    20. Yushu Shi & Purushottam Laud & Joan Neuner, 2021. "A dependent Dirichlet process model for survival data with competing risks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 156-176, January.
    21. E. Brunel & F. Comte & A. Guilloux, 2009. "Nonparametric density estimation in presence of bias and censoring," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 166-194, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:191:y:2024:i:c:s0167947323001858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.