IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i1p313-323.html
   My bibliography  Save this article

A nonparametric Bayesian model for estimating spectral densities of resting‐state EEG twin data

Author

Listed:
  • Brian Hart
  • Michele Guindani
  • Stephen Malone
  • Mark Fiecas

Abstract

Electroencephalography (EEG) is a noninvasive neuroimaging modality that captures electrical brain activity many times per second. We seek to estimate power spectra from EEG data that ware gathered for 557 adolescent twin pairs through the Minnesota Twin Family Study (MTFS). Typically, spectral analysis methods treat time series from each subject separately, and independent spectral densities are fit to each time series. Since the EEG data were collected on twins, it is reasonable to assume that the time series have similar underlying characteristics, so borrowing information across subjects can significantly improve estimation. We propose a Nested Bernstein Dirichlet prior model to estimate the power spectrum of the EEG signal for each subject by smoothing periodograms within and across subjects while requiring minimal user input to tuning parameters. Furthermore, we leverage the MTFS twin study design to estimate the heritability of EEG power spectra with the hopes of establishing new endophenotypes. Through simulation studies designed to mimic the MTFS, we show our method out‐performs a set of other popular methods.

Suggested Citation

  • Brian Hart & Michele Guindani & Stephen Malone & Mark Fiecas, 2022. "A nonparametric Bayesian model for estimating spectral densities of resting‐state EEG twin data," Biometrics, The International Biometric Society, vol. 78(1), pages 313-323, March.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:1:p:313-323
    DOI: 10.1111/biom.13393
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13393
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosen, Ori & Stoffer, David S. & Wood, Sally, 2009. "Local Spectral Analysis via a Bayesian Mixture of Smoothing Splines," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 249-262.
    2. Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
    3. Rodríguez, Abel & Dunson, David B & Gelfand, Alan E, 2008. "The Nested Dirichlet Process," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1131-1154.
    4. Yoshihide Kakizawa, 2006. "Bernstein polynomial estimation of a spectral density," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 253-287, March.
    5. Robert T. Krafty & Ori Rosen & David S. Stoffer & Daniel J. Buysse & Martica H. Hall, 2017. "Conditional Spectral Analysis of Replicated Multiple Time Series With Application to Nocturnal Physiology," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1405-1416, October.
    6. Nidhan Choudhuri & Subhashis Ghosal & Anindya Roy, 2004. "Bayesian Estimation of the Spectral Density of a Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1050-1059, December.
    7. Sonia Petrone, 1999. "Random Bernstein Polynomials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 373-393, September.
    8. Andrés F. Barrientos & Alejandro Jara & Fernando A. Quintana, 2017. "Fully Nonparametric Regression for Bounded Data Using Dependent Bernstein Polynomials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 806-825, April.
    9. Robert T. Krafty & Martica Hall & Wensheng Guo, 2011. "Functional mixed effects spectral analysis," Biometrika, Biometrika Trust, vol. 98(3), pages 583-598.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shibin, 2020. "Nonparametric Bayesian inference for the spectral density based on irregularly spaced data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    2. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    3. Hu, Zhixiong & Prado, Raquel, 2023. "Fast Bayesian inference on spectral analysis of multivariate stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    4. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    5. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Boland, Joanna & Telesca, Donatello & Sugar, Catherine & Jeste, Shafali & Goldbeck, Cameron & Senturk, Damla, 2022. "A study of longitudinal trends in time-frequency transformations of EEG data during a learning experiment," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    7. Gard, Charlotte C. & Brown, Elizabeth R., 2015. "A Bayesian hierarchical model for estimating and partitioning Bernstein polynomial density functions," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 73-83.
    8. Christian Macaro & Raquel Prado, 2014. "Spectral Decompositions of Multiple Time Series: A Bayesian Non-parametric Approach," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 105-129, January.
    9. Shibin Zhang, 2022. "Automatic estimation of spatial spectra via smoothing splines," Computational Statistics, Springer, vol. 37(2), pages 565-590, April.
    10. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    11. Macaro, Christian, 2010. "Bayesian non-parametric signal extraction for Gaussian time series," Journal of Econometrics, Elsevier, vol. 157(2), pages 381-395, August.
    12. Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    13. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    14. Yakun Wang & Zeda Li & Scott A. Bruce, 2023. "Adaptive Bayesian sum of trees model for covariate‐dependent spectral analysis," Biometrics, The International Biometric Society, vol. 79(3), pages 1826-1839, September.
    15. Scott A. Bruce & Martica H. Hall & Daniel J. Buysse & Robert T. Krafty, 2018. "Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series," Biometrics, The International Biometric Society, vol. 74(1), pages 260-269, March.
    16. Alexandre Leblanc, 2009. "Chung–Smirnov property for Bernstein estimators of distribution functions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 133-142.
    17. Bouezmarni, Taoufik & El Ghouch, Anouar, 2011. "Bernstein estimator for unbounded density copula," UC3M Working papers. Economics we1143, Universidad Carlos III de Madrid. Departamento de Economía.
    18. Davide Pigoli & Pantelis Z. Hadjipantelis & John S. Coleman & John A. D. Aston, 2018. "The statistical analysis of acoustic phonetic data: exploring differences between spoken Romance languages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1103-1145, November.
    19. Chau, Van Vinh & von Sachs, Rainer, 2016. "Functional mixed effects wavelet estimation for spectra of replicated time series," LIDAM Discussion Papers ISBA 2016013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Zhang, Shibin, 2019. "Bayesian copula spectral analysis for stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 166-179.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:1:p:313-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.