IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v11y2002i1d10.1007_bf02511443.html
   My bibliography  Save this article

Non parametric mixture priors based on an exponential random scheme

Author

Listed:
  • Sonia Petrone

    (Università L. Bocconi)

  • Piero Veronese

    (Università L. Bocconi)

Abstract

We propose a general procedure for constructing nonparametric priors for Bayesian inference. Under very general assumptions, the proposed prior selects absolutely continuous distribution functions, hence it can be useful with continuous data. We use the notion ofFeller-type approximation, with a random scheme based on the natural exponential family, in order to construct a large class of distribution functions. We show how one can assign a probability to such a class and discuss the main properties of the proposed prior, namedFeller prior. Feller priors are related to mixture models with unknown number of components or, more generally, to mixtures with unknown weight distribution. Two illustrations relative to the estimation of a density and of a mixing distribution are carried out with respect to well known data-set in order to evaluate the performance of our procedure. Computations are performed using a modified version of an MCMC algorithm which is briefly described.

Suggested Citation

  • Sonia Petrone & Piero Veronese, 2002. "Non parametric mixture priors based on an exponential random scheme," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(1), pages 1-20, February.
  • Handle: RePEc:spr:stmapp:v:11:y:2002:i:1:d:10.1007_bf02511443
    DOI: 10.1007/BF02511443
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/BF02511443
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/BF02511443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sonia Petrone, 1999. "Random Bernstein Polynomials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 373-393, September.
    2. Sonia Petrone & Larry Wasserman, 2002. "Consistency of Bernstein polynomial posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(1), pages 79-100, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandra Fortini & Sonia Petrone, 2020. "Quasi‐Bayes properties of a procedure for sequential learning in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1087-1114, September.
    2. repec:dau:papers:123456789/3984 is not listed on IDEAS
    3. Xiang Zhang & Yanbing Zheng, 2014. "Nonparametric Bayesian inference for multivariate density functions using Feller priors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 321-340, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cte:wsrepe:ws131211 is not listed on IDEAS
    2. Yuhui Chen & Timothy Hanson & Jiajia Zhang, 2014. "Accelerated hazards model based on parametric families generalized with Bernstein polynomials," Biometrics, The International Biometric Society, vol. 70(1), pages 192-201, March.
    3. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    4. Carnicero, José Antonio, 2010. "Circular Bernstein polynomial distributions," DES - Working Papers. Statistics and Econometrics. WS ws102511, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Burda, Martin & Prokhorov, Artem, 2014. "Copula based factorization in Bayesian multivariate infinite mixture models," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 200-213.
    6. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    7. Lorenzo Trippa & Paolo Bulla & Sonia Petrone, 2011. "Extended Bernstein prior via reinforced urn processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 481-496, June.
    8. Kim, Dong-Hyuk, 2013. "Optimal choice of a reserve price under uncertainty," International Journal of Industrial Organization, Elsevier, vol. 31(5), pages 587-602.
    9. Andrés F. Barrientos & Alejandro Jara & Fernando A. Quintana, 2017. "Fully Nonparametric Regression for Bounded Data Using Dependent Bernstein Polynomials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 806-825, April.
    10. Gard, Charlotte C. & Brown, Elizabeth R., 2015. "A Bayesian hierarchical model for estimating and partitioning Bernstein polynomial density functions," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 73-83.
    11. Yao Luo & Peijun Sang & Ruli Xiao, 2024. "Order Statistics Approaches to Unobserved Heterogeneity in Auctions," Working Papers tecipa-776, University of Toronto, Department of Economics.
    12. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    13. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    14. Karabatsos, George & Walker, Stephen G., 2007. "Bayesian nonparametric inference of stochastically ordered distributions, with Pólya trees and Bernstein polynomials," Statistics & Probability Letters, Elsevier, vol. 77(9), pages 907-913, May.
    15. Han, Bing & Dalal, Siddhartha R., 2012. "A Bernstein-type estimator for decreasing density with application to p-value adjustments," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 427-437.
    16. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    17. Zheng, Yanbing, 2011. "Shape restriction of the multi-dimensional Bernstein prior for density functions," Statistics & Probability Letters, Elsevier, vol. 81(6), pages 647-651, June.
    18. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Macaro, Christian, 2010. "Bayesian non-parametric signal extraction for Gaussian time series," Journal of Econometrics, Elsevier, vol. 157(2), pages 381-395, August.
    20. Carnicero, José Antonio, 2008. "A semi-parametric model for circular data based on mixtures of beta distributions," DES - Working Papers. Statistics and Econometrics. WS ws081305, Universidad Carlos III de Madrid. Departamento de Estadística.
    21. Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:11:y:2002:i:1:d:10.1007_bf02511443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.