Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2015.12.021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Peter Guttorp & Tilmann Gneiting, 2006. "Studies in the history of probability and statistics XLIX On the Matern correlation family," Biometrika, Biometrika Trust, vol. 93(4), pages 989-995, December.
- Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
- C. G. Kaufman & B. A. Shaby, 2013. "The role of the range parameter for estimation and prediction in geostatistics," Biometrika, Biometrika Trust, vol. 100(2), pages 473-484.
- Wu, Wei-Ying & Lim, Chae Young & Xiao, Yimin, 2013. "Tail estimation of the spectral density for a stationary Gaussian random field," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 74-91.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Victor De Oliveira & Zifei Han, 2022. "On Information About Covariance Parameters in Gaussian Matérn Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 690-712, December.
- Hong, Yiping & Zhou, Zaiying & Yang, Ying, 2020. "Hypothesis testing for the smoothness parameter of Matérn covariance model on a regular grid," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
- Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
- Bachoc, François & Lagnoux, Agnès & Nguyen, Thi Mong Ngoc, 2017. "Cross-validation estimation of covariance parameters under fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 42-67.
- Ip, Ryan H.L. & Li, W.K., 2017. "A class of valid Matérn cross-covariance functions for multivariate spatio-temporal random fields," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 115-119.
- Wenpin Tang & Lu Zhang & Sudipto Banerjee, 2021. "On identifiability and consistency of the nugget in Gaussian spatial process models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1044-1070, November.
- Ghulam A. Qadir & Ying Sun, 2021. "Semiparametric estimation of cross‐covariance functions for multivariate random fields," Biometrics, The International Biometric Society, vol. 77(2), pages 547-560, June.
- Guinness, Joseph & Fuentes, Montserrat, 2016. "Isotropic covariance functions on spheres: Some properties and modeling considerations," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 143-152.
- Lim, Chae Young & Chen, Chien-Hung & Wu, Wei-Ying, 2017. "Numerical instability of calculating inverse of spatial covariance matrices," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 182-188.
- Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
- Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
- Girard, Didier A., 2020. "Asymptotic near-efficiency of the “Gibbs-energy (GE) and empirical-variance” estimating functions for fitting Matérn models - II: Accounting for measurement errors via “conditional GE mean”," Statistics & Probability Letters, Elsevier, vol. 162(C).
- Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
- Hansen, Linda V. & Thorarinsdottir, Thordis L., 2013. "A note on moving average models for Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 850-855.
- Heinrich, Claudio & Pakkanen, Mikko S. & Veraart, Almut E.D., 2019. "Hybrid simulation scheme for volatility modulated moving average fields," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 224-244.
- Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
- Reihaneh Entezari & Patrick E. Brown & Jeffrey S. Rosenthal, 2020. "Bayesian spatial analysis of hardwood tree counts in forests via MCMC," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
- Jaewoo Park & Sangwan Lee, 2022. "A projection‐based Laplace approximation for spatial latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
- Matthew J. Heaton & Stephan R. Sain & Andrew J. Monaghan & Olga V. Wilhelmi & Mary H. Hayden, 2015. "An Analysis of an Incomplete Marked Point Pattern of Heat-Related 911 Calls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 123-135, March.
More about this item
Keywords
ARMA; Gaussian process; Maximum likelihood; Estimating functions; Matérn autocorrelation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:110:y:2016:i:c:p:191-197. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.