IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v183y2020i2p535-563.html
   My bibliography  Save this article

A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys

Author

Listed:
  • K. Shuvo Bakar
  • Nicholas Biddle
  • Philip Kokic
  • Huidong Jin

Abstract

Motivated by the Australian National University poll, we consider a situation where survey data have been collected from respondents for several categorical variables and a primary geographic classification, e.g. postcode. Here, a common and important problem is to obtain estimates for a second target geography that overlaps with the primary geography but has not been collected from the respondents. We examine this problem when areal level census information is available for both geographic classifications. Such a situation is challenging from a small area estimation perspective for several reasons: there is a misalignment between the census and survey information as well as the geographical classifications; the geographic areas are potentially small and so prediction can be difficult because of the sparse or spatially missing data issue; and there is the possibility of non‐stationary spatial dependence. To address these problems we develop a Bayesian model using latent processes, underpinned by a non‐stationary spatial basis that combines Moran's I and multiresolution basis functions with a small but representative set of knots. The study results based on simulated data demonstrate that the model can be highly effective and gives more accurate estimates for areas defined by the target geography than several existing models. The model also performs well for the Australian National University poll data to predict on a second geographic classification: statistical area level 2.

Suggested Citation

  • K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
  • Handle: RePEc:bla:jorssa:v:183:y:2020:i:2:p:535-563
    DOI: 10.1111/rssa.12526
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12526
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kang, Emily L. & Cressie, Noel, 2011. "Bayesian Inference for the Spatial Random Effects Model," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 972-983.
    2. Peter Diggle & Søren Lophaven, 2006. "Bayesian Geostatistical Design," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 53-64, March.
    3. K. Shuvo Bakar & Huidong Jin, 2018. "Spatio-temporal quantitative links between climatic extremes and population flows: a case study in the Murray-Darling Basin, Australia," Climatic Change, Springer, vol. 148(1), pages 139-153, May.
    4. John Hughes & Murali Haran, 2013. "Dimension reduction and alleviation of confounding for spatial generalized linear mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 139-159, January.
    5. Brian J. Reich & James S. Hodges & Vesna Zadnik, 2006. "Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease-Mapping Models," Biometrics, The International Biometric Society, vol. 62(4), pages 1197-1206, December.
    6. Ephraim M. Hanks & Erin M. Schliep & Mevin B. Hooten & Jennifer A. Hoeting, 2015. "Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification," Environmetrics, John Wiley & Sons, Ltd., vol. 26(4), pages 243-254, June.
    7. Ray Chambers & Hukum Chandra & Nicola Salvati & Nikos Tzavidis, 2014. "Outlier robust small area estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 47-69, January.
    8. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    9. Duncan Lee & Alastair Rushworth & Sujit K. Sahu, 2014. "A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution," Biometrics, The International Biometric Society, vol. 70(2), pages 419-429, June.
    10. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    11. Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226, February.
    12. Sujit Kumar Sahu & Khandoker Shuvo Bakar, 2012. "Hierarchical Bayesian autoregressive models for large space–time data with applications to ozone concentration modelling," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(5), pages 395-415, September.
    13. Stefano Marchetti & Caterina Giusti & Nicola Salvati & Monica Pratesi, 2017. "Small area estimation based on M-quantile models in presence of outliers in auxiliary variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 531-555, November.
    14. Jonathan R. Bradley & Christopher K. Wikle & Scott H. Holan, 2016. "Bayesian Spatial Change of Support for Count-Valued Survey Data With Application to the American Community Survey," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 472-487, April.
    15. K. Shuvo Bakar & Philip Kokic & Huidong Jin, 2015. "A spatiodynamic model for assessing frost risk in south-eastern Australia," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(5), pages 755-778, November.
    16. Torabi, Mahmoud & Rao, J.N.K., 2014. "On small area estimation under a sub-area level model," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 36-55.
    17. Enrico Fabrizi & Giorgio E. Montanari & M. Giovanna Ranalli, 2016. "A hierarchical latent class model for predicting disability small area counts from survey data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 103-131, January.
    18. Matthias Katzfuss, 2013. "Bayesian nonstationary spatial modeling for very large datasets," Environmetrics, John Wiley & Sons, Ltd., vol. 24(3), pages 189-200, May.
    19. Gauri Sankar Datta & Abhyuday Mandal, 2015. "Small Area Estimation With Uncertain Random Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1735-1744, December.
    20. Jiming Jiang & P. Lahiri, 2001. "Empirical Best Prediction for Small Area Inference with Binary Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 217-243, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    2. Isa Marques & Thomas Kneib & Nadja Klein, 2022. "Mitigating spatial confounding by explicitly correlating Gaussian random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    3. Garritt L. Page & Yajun Liu & Zhuoqiong He & Donchu Sun, 2017. "Estimation and Prediction in the Presence of Spatial Confounding for Spatial Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 780-797, September.
    4. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    5. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    6. Jennifer F. Bobb & Maricela F. Cruz & Stephen J. Mooney & Adam Drewnowski & David Arterburn & Andrea J. Cook, 2022. "Accounting for spatial confounding in epidemiological studies with individual‐level exposures: An exposure‐penalized spline approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1271-1293, July.
    7. Chakraborty Adrijo & Datta Gauri Sankar & Mandal Abhyuday, 2016. "A Two-Component Normal Mixture Alternative to the Fay-Herriot Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 67-90, March.
    8. repec:csb:stintr:v:17:y:2016:i:1:p:67-90 is not listed on IDEAS
    9. Soumen Dey & Mohan Delampady & Ravishankar Parameshwaran & N. Samba Kumar & Arjun Srivathsa & K. Ullas Karanth, 2017. "Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 111-139, June.
    10. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    11. Candace Berrett & William F. Christensen & Stephan R. Sain & Nathan Sandholtz & David W. Coats & Claudia Tebaldi & Hedibert F. Lopes, 2020. "Modeling sea‐level processes on the U.S. Atlantic Coast," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    12. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    13. Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    14. Janine B. Illian & David F. R. P. Burslem, 2017. "Improving the usability of spatial point process methodology: an interdisciplinary dialogue between statistics and ecology," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 495-520, October.
    15. Newhouse,David Locke & Merfeld,Joshua David & Ramakrishnan,Anusha Pudugramam & Swartz,Tom & Lahiri,Partha, 2022. "Small Area Estimation of Monetary Poverty in Mexico Using Satellite Imagery and Machine Learning," Policy Research Working Paper Series 10175, The World Bank.
    16. Trevor J. Hefley & Mevin B. Hooten & Ephraim M. Hanks & Robin E. Russell & Daniel P. Walsh, 2017. "The Bayesian Group Lasso for Confounded Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 42-59, March.
    17. Joshua P. Keller & Adam A. Szpiro, 2020. "Selecting a scale for spatial confounding adjustment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1121-1143, June.
    18. Esmail Yarali & Firoozeh Rivaz, 2020. "Incorporating covariate information in the covariance structure of misaligned spatial data," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    19. João B. M. Pereira & Widemberg S. Nobre & Igor F. L. Silva & Alexandra M. Schmidt, 2020. "Spatial confounding in hurdle multilevel beta models: the case of the Brazilian Mathematical Olympics for Public Schools," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1051-1073, June.
    20. Qian Ren & Sudipto Banerjee, 2013. "Hierarchical Factor Models for Large Spatially Misaligned Data: A Low-Rank Predictive Process Approach," Biometrics, The International Biometric Society, vol. 69(1), pages 19-30, March.
    21. Xu Ning & Francis K. C. Hui & Alan H. Welsh, 2023. "A double fixed rank kriging approach to spatial regression models with covariate measurement error," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:183:y:2020:i:2:p:535-563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.