IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2006i2p679-698.html
   My bibliography  Save this article

Perfect simulation for marked point processes

Author

Listed:
  • van Lieshout, M.N.M.
  • Stoica, R.S.

Abstract

No abstract is available for this item.

Suggested Citation

  • van Lieshout, M.N.M. & Stoica, R.S., 2006. "Perfect simulation for marked point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 679-698, November.
  • Handle: RePEc:eee:csdana:v:51:y:2006:i:2:p:679-698
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00070-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Mira & J. Møller & G. O. Roberts, 2001. "Perfect slice samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 593-606.
    2. Kendall, Wilfrid S. & Montana, Giovanni, 2002. "Small sets and Markov transition densities," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 177-194, June.
    3. Ferrari, Pablo A. & Fernández, Roberto & Garcia, Nancy L., 2002. "Perfect simulation for interacting point processes, loss networks and Ising models," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 63-88, November.
    4. J. Møller, 1999. "Perfect simulation of conditionally specified models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 251-264.
    5. M. N. M. Van Lieshout & R. S. Stoica, 2003. "The Candy model: properties and inference," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(2), pages 177-206, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    2. Khadidja Henni & Pierre-Yves Louis & Brigitte Vannier & Ahmed Moussa, 2020. "Is-ClusterMPP: clustering algorithm through point processes and influence space towards high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 543-570, September.
    3. Radu S. Stoica & Vicent J. Martínez & Enn Saar, 2007. "A three‐dimensional object point process for detection of cosmic filaments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 459-477, August.
    4. Nicolas Picard & Avner Bar‐Hen & Frédéric Mortier & Joël Chadœuf, 2009. "The Multi‐scale Marked Area‐interaction Point Process: A Model for the Spatial Pattern of Trees," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 23-41, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stoica, R.S. & Gregori, P. & Mateu, J., 2005. "Simulated annealing and object point processes: Tools for analysis of spatial patterns," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1860-1882, November.
    2. Marcin Kacperczyk & Paul Damien & Stephen G. Walker, 2013. "A new class of Bayesian semi-parametric models with applications to option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 967-980, May.
    3. Bounnite Mohamed Yasser & Nasroallah Abdelaziz, 2015. "Widening and clustering techniques allowing the use of monotone CFTP algorithm," Monte Carlo Methods and Applications, De Gruyter, vol. 21(4), pages 301-312, December.
    4. Garcia, Nancy L. & Maric, Nevena, 2006. "Existence and perfect simulation of one-dimensional loss networks," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1920-1931, December.
    5. Bermolen, Paola & Jonckheere, Matthieu & Moyal, Pascal, 2017. "The jamming constant of uniform random graphs," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2138-2178.
    6. Lasse Leskelä & Falk Unger, 2012. "Stability of a spatial polling system with greedy myopic service," Annals of Operations Research, Springer, vol. 198(1), pages 165-183, September.
    7. Nancy L. Garcia & Nevena Marić, 2008. "Simulation Study for the Clan of Ancestors in a Perfect Simulation Scheme of a Continuous One-Dimensional Loss Network," Methodology and Computing in Applied Probability, Springer, vol. 10(3), pages 453-469, September.
    8. Dedecker, Jérôme & Merlevède, Florence & Rio, Emmanuel, 2024. "Deviation inequalities for dependent sequences with applications to strong approximations," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    9. Carsten Botts, 2013. "An accept-reject algorithm for the positive multivariate normal distribution," Computational Statistics, Springer, vol. 28(4), pages 1749-1773, August.
    10. Nasroallah Abdelaziz & Bounnite Mohamed Yasser, 2019. "A kind of dual form for coupling from the past algorithm, to sample from Markov chain steady-state probability," Monte Carlo Methods and Applications, De Gruyter, vol. 25(4), pages 317-327, December.
    11. Claes Fornell & Paul Damien & Marcin Kacperczyk & Michel Wedel, 2018. "Does Aggregate Buyer Satisfaction affect Household Consumption Growth?," DOCFRADIS Working Papers 1802, Catedra Fundación Ramón Areces de Distribución Comercial, revised Jun 2018.
    12. Christian P. Robert & Gareth Roberts, 2021. "Rao–Blackwellisation in the Markov Chain Monte Carlo Era," International Statistical Review, International Statistical Institute, vol. 89(2), pages 237-249, August.
    13. Nicolas Picard & Avner Bar‐Hen & Frédéric Mortier & Joël Chadœuf, 2009. "The Multi‐scale Marked Area‐interaction Point Process: A Model for the Spatial Pattern of Trees," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 23-41, March.
    14. Noel Cressie & Craig Liu, 2001. "Binary Markov Mesh Models and Symmetric Markov Random Fields: Some Results on their Equivalence," Methodology and Computing in Applied Probability, Springer, vol. 3(1), pages 5-34, March.
    15. Tan, Ming & Tian, Guo-Liang & Wang Ng, Kai, 2006. "Hierarchical models for repeated binary data using the IBF sampler," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1272-1286, March.
    16. Robert, Philippe, 2010. "The evolution of a spatial stochastic network," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1342-1363, July.
    17. Gregori, P. & van Lieshout, M. N. M. & Mateu, J., 2004. "Mixture formulae for shot noise weighted point processes," Statistics & Probability Letters, Elsevier, vol. 67(4), pages 311-320, May.
    18. Fakhouri H. & Nasroallah A., 2009. "On the simulation of Markov chain steady-state distribution using CFTP algorithm," Monte Carlo Methods and Applications, De Gruyter, vol. 15(2), pages 91-105, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2006:i:2:p:679-698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.