IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i515p1096-1120.html
   My bibliography  Save this article

Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings

Author

Listed:
  • Peter J. Diggle
  • Emanuele Giorgi

Abstract

In low-resource settings, prevalence mapping relies on empirical prevalence data from a finite, often spatially sparse, set of surveys of communities within the region of interest, possibly supplemented by remotely sensed images that can act as proxies for environmental risk factors. A standard geostatistical model for data of this kind is a generalized linear mixed model with binomial error distribution, logistic link, and a combination of explanatory variables and a Gaussian spatial stochastic process in the linear predictor. In this article, we first review statistical methods and software associated with this standard model, then consider several methodological extensions whose development has been motivated by the requirements of specific applications. These include: methods for combining randomized survey data with data from nonrandomized, and therefore potentially biased, surveys; spatio-temporal extensions; and spatially structured zero-inflation. Throughout, we illustrate the methods with disease mapping applications that have arisen through our involvement with a range of African public health programs.

Suggested Citation

  • Peter J. Diggle & Emanuele Giorgi, 2016. "Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1096-1120, July.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1096-1120
    DOI: 10.1080/01621459.2015.1123158
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1123158
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1123158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jennifer C Stevenson & Gillian H Stresman & Caroline W Gitonga & Jonathan Gillig & Chrispin Owaga & Elizabeth Marube & Wycliffe Odongo & Albert Okoth & Pauline China & Robin Oriango & Simon J Brooker , 2013. "Reliability of School Surveys in Estimating Geographic Variation in Malaria Transmission in the Western Kenyan Highlands," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    2. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    3. Peter Diggle & Rana Moyeed & Barry Rowlingson & Madeleine Thomson, 2002. "Childhood malaria in the Gambia: a case‐study in model‐based geostatistics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 493-506, October.
    4. Joe, Harry, 2008. "Accuracy of Laplace approximation for discrete response mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5066-5074, August.
    5. Simon I Hay & Carlos A Guerra & Peter W Gething & Anand P Patil & Andrew J Tatem & Abdisalan M Noor & Caroline W Kabaria & Bui H Manh & Iqbal R F Elyazar & Simon Brooker & David L Smith & Rana A Moyee, 2009. "A World Malaria Map: Plasmodium falciparum Endemicity in 2007," PLOS Medicine, Public Library of Science, vol. 6(3), pages 1-17, March.
    6. Rachel L Pullan & Peter W Gething & Jennifer L Smith & Charles S Mwandawiro & Hugh J W Sturrock & Caroline W Gitonga & Simon I Hay & Simon Brooker, 2011. "Spatial Modelling of Soil-Transmitted Helminth Infections in Kenya: A Disease Control Planning Tool," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 5(2), pages 1-11, February.
    7. Jen Claridge & Peter Diggle & Catherine M. McCann & Grace Mulcahy & Rob Flynn & Jim McNair & Sam Strain & Michael Welsh & Matthew Baylis & Diana J.L. Williams, 2012. "Fasciola hepatica is associated with the failure to detect bovine tuberculosis in dairy cattle," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    8. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    9. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    10. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    11. Julian Besag & Debashis Mondal, 2005. "First-order intrinsic autoregressions and the de Wijs process," Biometrika, Biometrika Trust, vol. 92(4), pages 909-920, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahid Tadayon & Mohammad Mehdi Saber, 2023. "A Spatial Logistic Regression Model Based on a Valid Skew-Gaussian Latent Field," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 59-73, March.
    2. Julius Ssempiira & Betty Nambuusi & John Kissa & Bosco Agaba & Fredrick Makumbi & Simon Kasasa & Penelope Vounatsou, 2017. "Geostatistical modelling of malaria indicator survey data to assess the effects of interventions on the geographical distribution of malaria prevalence in children less than 5 years in Uganda," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-20, April.
    3. Benjamin F. Arnold & Francois Rerolle & Christine Tedijanto & Sammy M. Njenga & Mahbubur Rahman & Ayse Ercumen & Andrew Mertens & Amy J. Pickering & Audrie Lin & Charles D. Arnold & Kishor Das & Chris, 2024. "Geographic pair matching in large-scale cluster randomized trials," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    2. Peter W Gething & Anand P Patil & Simon I Hay, 2010. "Quantifying Aggregated Uncertainty in Plasmodium falciparum Malaria Prevalence and Populations at Risk via Efficient Space-Time Geostatistical Joint Simulation," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-12, April.
    3. Giovanna Jona Lasinio & Gianluca Mastrantonio & Alessio Pollice, 2013. "Discussing the “big n problem”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 97-112, March.
    4. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    5. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    6. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    7. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    8. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    9. I Gede Nyoman Mindra Jaya & Henk Folmer, 2024. "High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia," Mathematics, MDPI, vol. 12(18), pages 1-29, September.
    10. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    11. Fasil Wagnew & Kefyalew Addis Alene & Matthew Kelly & Darren Gray, 2023. "Geospatial Overlap of Undernutrition and Tuberculosis in Ethiopia," IJERPH, MDPI, vol. 20(21), pages 1-15, October.
    12. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    13. Somnath Chaudhuri & Gerard Giménez-Adsuar & Marc Saez & Maria A. Barceló, 2022. "PandemonCAT: Monitoring the COVID-19 Pandemic in Catalonia, Spain," IJERPH, MDPI, vol. 19(8), pages 1-22, April.
    14. Zaida C. Quiroz & Marcos O. Prates & Håvard Rue, 2015. "A Bayesian approach to estimate the biomass of anchovies off the coast of Perú," Biometrics, The International Biometric Society, vol. 71(1), pages 208-217, March.
    15. Reihaneh Entezari & Patrick E. Brown & Jeffrey S. Rosenthal, 2020. "Bayesian spatial analysis of hardwood tree counts in forests via MCMC," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    16. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    17. Jaewoo Park & Sangwan Lee, 2022. "A projection‐based Laplace approximation for spatial latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    18. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    19. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    20. Francesca Della Rocca & Pietro Milanesi, 2022. "The New Dominator of the World: Modeling the Global Distribution of the Japanese Beetle under Land Use and Climate Change Scenarios," Land, MDPI, vol. 11(4), pages 1-17, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:515:p:1096-1120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.