IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i4d10.1007_s13253-024-00600-6.html
   My bibliography  Save this article

A Spatial Mixture Model for Spaceborne Lidar Observations Over Mixed Forest and Non-forest Land Types

Author

Listed:
  • Paul B. May

    (University of Maryland
    South Dakota School of Mines and Technology)

  • Andrew O. Finley

    (Michigan State University
    Michigan State University)

  • Ralph O. Dubayah

    (University of Maryland)

Abstract

The Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne lidar instrument that collects near-global measurements of forest structure. While expansive in scope, GEDI samples are spatially sparse and cover a small fraction of the land surface. Converting the sparse samples into spatially complete predictive maps is of practical importance for a number of ecological studies. A complicating factor is that GEDI collects measurements over forested and non-forested land alike, with no automatic labeling of the land type. Such classification is important, as it categorically influences the probability distribution of the spatial process and the ecological interpretation of the observations/predictions. We propose and implement a spatial mixture model, separating the observations and the greater spatial domain into two latent classes. The latent classes are governed by a Bernoulli spatial process, with spatial effects driven by a Gaussian process. Within each class, the process is governed by a separate spatial model, describing the unique probabilistic attributes. Model predictions take the form of scalar predictions of the GEDI observables as well as discrete labeling of the class membership. Inference is conducted through a Bayesian paradigm, yielding rich quantification of prediction and uncertainty through posterior predictive distributions. We demonstrate the method using GEDI data over Wollemi National Park, Australia, using optical data from Landsat 8 as model covariates. When compared to a single spatial model, the mixture model achieves much higher posterior predictive densities on the true value. When compared to a random forest model, a common algorithmic approach in the remote sensing community, the random forest achieves better absolute prediction accuracy for prediction locations far from observed training data locations, but at the expense of location-specific assessments of uncertainty. The unsupervised binary classifications of the mixture model appear broadly ecologically interpretable as forest and non-forest when compared to optical imagery, but further comparison to ground-truth data is required.

Suggested Citation

  • Paul B. May & Andrew O. Finley & Ralph O. Dubayah, 2024. "A Spatial Mixture Model for Spaceborne Lidar Observations Over Mixed Forest and Non-forest Land Types," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 671-694, December.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:4:d:10.1007_s13253-024-00600-6
    DOI: 10.1007/s13253-024-00600-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-024-00600-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-024-00600-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian Neelon & Alan E. Gelfand & Marie Lynn Miranda, 2014. "A multivariate spatial mixture model for areal data: examining regional differences in standardized test scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(5), pages 737-761, November.
    2. Finley, Andrew O. & Banerjee, Sudipto & MacFarlane, David W., 2011. "A Hierarchical Model for Quantifying Forest Variables Over Large Heterogeneous Landscapes With Uncertain Forest Areas," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 31-48.
    3. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    4. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    5. Jarno Vanhatalo & Scott D. Foster & Geoffrey R. Hosack, 2021. "Spatiotemporal clustering using Gaussian processes embedded in a mixture model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
    6. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    7. Wall, Melanie M. & Liu, Xuan, 2009. "Spatial latent class analysis model for spatially distributed multivariate binary data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3057-3069, June.
    8. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    9. Lindgren, Finn & Rue, Håvard, 2015. "Bayesian Spatial Modelling with R-INLA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i19).
    10. Geir-Arne Fuglstad & Daniel Simpson & Finn Lindgren & Håvard Rue, 2019. "Constructing Priors that Penalize the Complexity of Gaussian Random Fields," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 445-452, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew O. Finley & Hans-Erik Andersen & Chad Babcock & Bruce D. Cook & Douglas C. Morton & Sudipto Banerjee, 2024. "Models to Support Forest Inventory and Small Area Estimation Using Sparsely Sampled LiDAR: A Case Study Involving G-LiHT LiDAR in Tanana, Alaska," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 695-722, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paige, John & Fuglstad, Geir-Arne & Riebler, Andrea & Wakefield, Jon, 2022. "Bayesian multiresolution modeling of georeferenced data: An extension of ‘LatticeKrig’," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    2. C. Forlani & S. Bhatt & M. Cameletti & E. Krainski & M. Blangiardo, 2020. "A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    3. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    4. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Peter A. Gao & Hannah M. Director & Cecilia M. Bitz & Adrian E. Raftery, 2022. "Probabilistic Forecasts of Arctic Sea Ice Thickness," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 280-302, June.
    6. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    7. Jacqueline D. Seufert & Andre Python & Christoph Weisser & Elías Cisneros & Krisztina Kis‐Katos & Thomas Kneib, 2022. "Mapping ex ante risks of COVID‐19 in Indonesia using a Bayesian geostatistical model on airport network data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2121-2155, October.
    8. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    9. André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.
    10. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    11. Luis A. Barboza & Shu Wei Chou Chen & Marcela Alfaro Córdoba & Eric J. Alfaro & Hugo G. Hidalgo, 2023. "Spatio‐temporal downscaling emulator for regional climate models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    12. Carlos Díaz-Avalos & Pablo Juan & Somnath Chaudhuri & Marc Sáez & Laura Serra, 2020. "Association between the New COVID-19 Cases and Air Pollution with Meteorological Elements in Nine Counties of New York State," IJERPH, MDPI, vol. 17(23), pages 1-18, December.
    13. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    14. Mauricio Campos & Bo Li & Guillaume Lafontaine & Joseph Napier & Feng Sheng Hu, 2024. "Integrating Different Data Sources Using a Bayesian Hierarchical Model to Unveil Glacial Refugia," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 576-600, September.
    15. Jorge Sicacha-Parada & Diego Pavon-Jordan & Ingelin Steinsland & Roel May & Bård Stokke & Ingar Jostein Øien, 2022. "A Spatial Modeling Framework for Monitoring Surveys with Different Sampling Protocols with a Case Study for Bird Abundance in Mid-Scandinavia," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 562-591, September.
    16. Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    17. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    18. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    19. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    20. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:4:d:10.1007_s13253-024-00600-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.