IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2006i2p587-600.html
   My bibliography  Save this article

Model-based cluster and discriminant analysis with the MIXMOD software

Author

Listed:
  • Biernacki, Christophe
  • Celeux, Gilles
  • Govaert, Gerard
  • Langrognet, Florent

Abstract

No abstract is available for this item.

Suggested Citation

  • Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard & Langrognet, Florent, 2006. "Model-based cluster and discriminant analysis with the MIXMOD software," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 587-600, November.
  • Handle: RePEc:eee:csdana:v:51:y:2006:i:2:p:587-600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(05)00330-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christophe Biernacki & Farid Beninel & Vincent Bretagnolle, 2002. "A Generalized Discriminant Rule When Training Population and Test Population Differ on Their Descriptive Parameters," Biometrics, The International Biometric Society, vol. 58(2), pages 387-397, June.
    2. Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
    3. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
    4. Celeux, Gilles & Govaert, Gerard, 1992. "A classification EM algorithm for clustering and two stochastic versions," Computational Statistics & Data Analysis, Elsevier, vol. 14(3), pages 315-332, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Gyemin & Scott, Clayton, 2012. "EM algorithms for multivariate Gaussian mixture models with truncated and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2816-2829.
    2. Hasnat, Md. Abul & Velcin, Julien & Bonnevay, Stephane & Jacques, Julien, 2017. "Evolutionary clustering for categorical data using parametric links among multinomial mixture models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 141-159.
    3. Jean-Patrick Baudry & Margarida Cardoso & Gilles Celeux & Maria Amorim & Ana Ferreira, 2015. "Enhancing the selection of a model-based clustering with external categorical variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(2), pages 177-196, June.
    4. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    5. Lee, Paul H. & Yu, Philip L.H., 2012. "Mixtures of weighted distance-based models for ranking data with applications in political studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2486-2500.
    6. Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
    7. Zhao, Jianhua & Jin, Libin & Shi, Lei, 2015. "Mixture model selection via hierarchical BIC," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 139-153.
    8. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    9. Ryan Browne & Paul McNicholas, 2014. "Estimating common principal components in high dimensions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 217-226, June.
    10. Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2009. "Variable selection in model-based clustering: A general variable role modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3872-3882, September.
    11. Lin, Tsung-I, 2014. "Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 183-195.
    12. Marco Riani & Andrea Cerioli & Domenico Perrotta & Francesca Torti, 2015. "Simulating mixtures of multivariate data with fixed cluster overlap in FSDA library," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 461-481, December.
    13. Nazif Çalış & Hamza Erol, 2012. "A new per-field classification method using mixture discriminant analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(10), pages 2129-2140, June.
    14. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    15. Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2011. "Variable selection in model-based discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1374-1387, November.
    16. Luca Scrucca & Adrian Raftery, 2015. "Improved initialisation of model-based clustering using Gaussian hierarchical partitions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 447-460, December.
    17. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    18. Gallopin Mélina & Celeux Gilles & Jaffrézic Florence & Rau Andrea, 2015. "A model selection criterion for model-based clustering of annotated gene expression data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(5), pages 413-428, November.
    19. Bongiorno, Enea G. & Goia, Aldo, 2016. "Classification methods for Hilbert data based on surrogate density," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 204-222.
    20. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    21. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    22. Carlo Cavicchia & Maurizio Vichi & Giorgia Zaccaria, 2022. "Gaussian mixture model with an extended ultrametric covariance structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 399-427, June.
    23. Chiquet, Julien & Eid, Mohamed & Limnios, Nikolaos, 2008. "Modelling and estimating the reliability of stochastic dynamical systems with Markovian switching," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1801-1808.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    2. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    3. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    4. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    5. repec:jss:jstsof:28:i04 is not listed on IDEAS
    6. Chehade, Abdallah & Savargaonkar, Mayuresh & Krivtsov, Vasiliy, 2022. "Conditional Gaussian mixture model for warranty claims forecasting," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    7. Bouveyron, Charles & Brunet, Camille, 2012. "Theoretical and practical considerations on the convergence properties of the Fisher-EM algorithm," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 29-41.
    8. Luca Bagnato & Antonio Punzo, 2013. "Finite mixtures of unimodal beta and gamma densities and the $$k$$ -bumps algorithm," Computational Statistics, Springer, vol. 28(4), pages 1571-1597, August.
    9. Bartolucci, Francesco & Giorgio E., Montanari & Pandolfi, Silvia, 2012. "Item selection by an extended Latent Class model: An application to nursing homes evaluation," MPRA Paper 38757, University Library of Munich, Germany.
    10. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    11. Hasnat, Md. Abul & Velcin, Julien & Bonnevay, Stephane & Jacques, Julien, 2017. "Evolutionary clustering for categorical data using parametric links among multinomial mixture models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 141-159.
    12. Roberto Mari & Salvatore Ingrassia & Antonio Punzo, 2023. "Local and Overall Deviance R-Squared Measures for Mixtures of Generalized Linear Models," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 233-266, July.
    13. Francesco Bartolucci & Giorgio E. Montanari & Silvia Pandolfi, 2018. "Latent Ignorability and Item Selection for Nursing Home Case-Mix Evaluation," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 172-193, April.
    14. Kostov, Philip & McErlean, Seamus, 2006. "Using the mixtures-of-distributions technique for the classification of farms into representative farms," Agricultural Systems, Elsevier, vol. 88(2-3), pages 528-537, June.
    15. Cremaschini, Alessandro & Maruotti, Antonello, 2023. "A finite mixture analysis of structural breaks in the G-7 gross domestic product series," Research in Economics, Elsevier, vol. 77(1), pages 76-90.
    16. Julian Aichholzer & Sylvia Kritzinger & Carolina Plescia, 2021. "National identity profiles and support for the European Union," European Union Politics, , vol. 22(2), pages 293-315, June.
    17. Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019. "The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
    18. François Bavaud, 2009. "Aggregation invariance in general clustering approaches," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 205-225, December.
    19. Jacky C. K. Ng & Joanne Y. H. Chong & Hilary K. Y. Ng, 2023. "The way I see the world, the way I envy others: a person-centered investigation of worldviews and the malicious and benign forms of envy among adolescents and adults," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    20. Gillian C. Williams & Karen A. Patte & Mark A. Ferro & Scott T. Leatherdale, 2021. "Associations between Longitudinal Patterns of Substance Use and Anxiety and Depression Symptoms among a Sample of Canadian Secondary School Students," IJERPH, MDPI, vol. 18(19), pages 1-14, October.
    21. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2006:i:2:p:587-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.