Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library
Author
Abstract
Suggested Citation
DOI: http://hdl.handle.net/10.18637/jss.v067.i06
Download full text from publisher
References listed on IDEAS
- Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard & Langrognet, Florent, 2006. "Model-based cluster and discriminant analysis with the MIXMOD software," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 587-600, November.
- Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
- Leisch, Friedrich, 2004. "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i08).
- Biecek, Przemyslaw & Szczurek, Ewa & Vingron, Martin & Tiuryn, Jerzy, 2012. "The R Package bgmm: Mixture Modeling with Uncertain Knowledge," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i03).
- Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
- Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2011. "Variable selection in model-based discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1374-1387, November.
- Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
- du Jardin, Philippe & Séverin, Eric, 2010. "Dynamic analysis of the business failure process: A study of bankruptcy trajectories," MPRA Paper 44379, University Library of Munich, Germany.
- Grun, Bettina & Leisch, Friedrich, 2007. "Fitting finite mixtures of generalized linear regressions in R," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5247-5252, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gilles Celeux & Cathy Maugis-Rabusseau & Mohammed Sedki, 2019. "Variable selection in model-based clustering and discriminant analysis with a regularization approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 259-278, March.
- Keefe Murphy & Thomas Brendan Murphy, 2020. "Gaussian parsimonious clustering models with covariates and a noise component," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 293-325, June.
- Christophe Biernacki & Alexandre Lourme, 2019. "Unifying data units and models in (co-)clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 7-31, March.
- Utkarsh J. Dang & Antonio Punzo & Paul D. McNicholas & Salvatore Ingrassia & Ryan P. Browne, 2017. "Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 4-34, April.
- Christophe Biernacki & Matthieu Marbac & Vincent Vandewalle, 2021. "Gaussian-Based Visualization of Gaussian and Non-Gaussian-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 129-157, April.
- Gallopin Mélina & Celeux Gilles & Jaffrézic Florence & Rau Andrea, 2015. "A model selection criterion for model-based clustering of annotated gene expression data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(5), pages 413-428, November.
- Pełka Marcin, 2019. "Analysis of Happiness in EU Countries Using the Multi-Model Classification based on Models of Symbolic Data," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(3), pages 15-25, September.
- Semhar Michael & Volodymyr Melnykov, 2016. "An effective strategy for initializing the EM algorithm in finite mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 563-583, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Proust-Lima, Cécile & Philipps, Viviane & Liquet, Benoit, 2017. "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i02).
- Papastamoulis, Panagiotis & Martin-Magniette, Marie-Laure & Maugis-Rabusseau, Cathy, 2016. "On the estimation of mixtures of Poisson regression models with large number of components," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 97-106.
- Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
- Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
- Rainer Schlittgen, 2011. "A weighted least-squares approach to clusterwise regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 205-217, June.
- Omerovic, Sanela & Friedl, Herwig & Grün, Bettina, 2022. "Modelling Multiple Regimes in Economic Growth by Mixtures of Generalised Nonlinear Models," Econometrics and Statistics, Elsevier, vol. 22(C), pages 124-135.
- Abhinandan Dalal & Diganta Mukherjee & Subhrajyoty Roy, 2020. "The Information Content of Taster's Valuation in Tea Auctions of India," Papers 2005.02814, arXiv.org.
- Roberto Mari & Salvatore Ingrassia & Antonio Punzo, 2023. "Local and Overall Deviance R-Squared Measures for Mixtures of Generalized Linear Models," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 233-266, July.
- Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
- Ian Wadsworth & Lisa V. Hampson & Thomas Jaki & Graeme J. Sills & Anthony G. Marson & Richard Appleton, 2020. "A quantitative framework to inform extrapolation decisions in children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 515-534, February.
- Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
- Spindler, M., 2014. "“They do know what they are doing ... at least most of them.†Asymmetric Information in the (private) Disability Insurance," Health, Econometrics and Data Group (HEDG) Working Papers 14/16, HEDG, c/o Department of Economics, University of York.
- Christian Kleiber & Achim Zeileis, 2016.
"Visualizing Count Data Regressions Using Rootograms,"
The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
- Christian Kleiber & Achim Zeileis, 2014. "Visualizing Count Data Regressions Using Rootograms," Working Papers 2014-20, Faculty of Economics and Statistics, Universität Innsbruck.
- Kleiber, Christian & Zeileis, Achim, 2014. "Visualizing Count Data Regressions Using Rootograms," Working papers 2014/13, Faculty of Business and Economics - University of Basel.
- Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012.
"Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
- Bettina Grün & Ioannis Kosmidis & Achim Zeileis, 2011. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Working Papers 2011-22, Faculty of Economics and Statistics, Universität Innsbruck.
- Marc A. Scott & Kaushik Mohan & Jacques‐Antoine Gauthier, 2020. "Model‐based clustering and analysis of life history data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1231-1251, June.
- Fabian Dvorak, 2020. "stratEst: Strategy Estimation in R," TWI Research Paper Series 119, Thurgauer Wirtschaftsinstitut, Universität Konstanz.
- Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
- Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
- Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
- Luca Scrucca & Adrian Raftery, 2015. "Improved initialisation of model-based clustering using Gaussian hierarchical partitions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 447-460, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:067:i06. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.