IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i10p1374-1387.html
   My bibliography  Save this article

Variable selection in model-based discriminant analysis

Author

Listed:
  • Maugis, C.
  • Celeux, G.
  • Martin-Magniette, M.-L.

Abstract

A general methodology for selecting predictors for Gaussian generative classification models is presented. The problem is regarded as a model selection problem. Three different roles for each possible predictor are considered: a variable can be a relevant classification predictor or not, and the irrelevant classification variables can be linearly dependent on a part of the relevant predictors or independent variables. This variable selection model was inspired by a previous work on variable selection in model-based clustering. A BIC-like model selection criterion is proposed. It is optimized through two embedded forward stepwise variable selection algorithms for classification and linear regression. The model identifiability and the consistency of the variable selection criterion are proved. Numerical experiments on simulated and real data sets illustrate the interest of this variable selection methodology. In particular, it is shown that this well ground variable selection model can be of great interest to improve the classification performance of the quadratic discriminant analysis in a high dimension context.

Suggested Citation

  • Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2011. "Variable selection in model-based discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1374-1387, November.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:10:p:1374-1387
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X11000753
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard & Langrognet, Florent, 2006. "Model-based cluster and discriminant analysis with the MIXMOD software," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 587-600, November.
    2. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    3. Chris Fraley & Adrian E. Raftery, 2003. "Enhanced Model-Based Clustering, Density Estimation, and Discriminant Analysis Software: MCLUST," Journal of Classification, Springer;The Classification Society, vol. 20(2), pages 263-286, September.
    4. Raftery, Adrian E. & Dean, Nema, 2006. "Variable Selection for Model-Based Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 168-178, March.
    5. Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2009. "Variable selection in model-based clustering: A general variable role modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3872-3882, September.
    6. Mary-Huard, Tristan & Robin, Stéphane & Daudin, Jean-Jacques, 2007. "A penalized criterion for variable selection in classification," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 695-705, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gilles Celeux & Cathy Maugis-Rabusseau & Mohammed Sedki, 2019. "Variable selection in model-based clustering and discriminant analysis with a regularization approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 259-278, March.
    2. Cappozzo, Andrea & Greselin, Francesca & Murphy, Thomas Brendan, 2021. "Robust variable selection for model-based learning in presence of adulteration," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    3. Michael Fop & Pierre-Alexandre Mattei & Charles Bouveyron & Thomas Brendan Murphy, 2022. "Unobserved classes and extra variables in high-dimensional discriminant analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 55-92, March.
    4. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    5. Alireza SANAEIFAR & Seyed Saeid MOHTASEBI & Mahdi GHASEMI-VARNAMKHASTI & Hojat AHMADI & Jesus LOZANO, 2014. "Development and application of a new low cost electronic nose for the ripeness monitoring of banana using computational techniques (PCA, LDA, SIMCA and SVM)," Czech Journal of Food Sciences, Czech Academy of Agricultural Sciences, vol. 32(6), pages 538-548.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    2. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    3. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    4. Floriello, Davide & Vitelli, Valeria, 2017. "Sparse clustering of functional data," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 1-18.
    5. Dolnicar, Sara & Grün, Bettina & Leisch, Friedrich, 2016. "Increasing sample size compensates for data problems in segmentation studies," Journal of Business Research, Elsevier, vol. 69(2), pages 992-999.
    6. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    7. Matthieu Marbac & Mohammed Sedki & Tienne Patin, 2020. "Variable Selection for Mixed Data Clustering: Application in Human Population Genomics," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 124-142, April.
    8. Melnykov, Volodymyr, 2016. "Model-based biclustering of clickstream data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 31-45.
    9. Cappozzo, Andrea & Greselin, Francesca & Murphy, Thomas Brendan, 2021. "Robust variable selection for model-based learning in presence of adulteration," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    10. Léna CAREL & Pierre ALQUIER, 2017. "Simultaneous Dimension Reduction and Clustering via the NMF-EM Algorithm," Working Papers 2017-38, Center for Research in Economics and Statistics.
    11. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    12. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    13. repec:jss:jstsof:18:i06 is not listed on IDEAS
    14. Luca Scrucca & Adrian Raftery, 2015. "Improved initialisation of model-based clustering using Gaussian hierarchical partitions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 447-460, December.
    15. Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2009. "Variable selection in model-based clustering: A general variable role modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3872-3882, September.
    16. McNicholas, P.D. & Murphy, T.B. & McDaid, A.F. & Frost, D., 2010. "Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 711-723, March.
    17. Rendon Aguirre, Janeth Carolina, 2017. "Clustering Big Data by Extreme Kurtosis Projections," DES - Working Papers. Statistics and Econometrics. WS 24522, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Anzanello, Michel J. & Fogliatto, Flavio S., 2011. "Selecting the best clustering variables for grouping mass-customized products involving workers' learning," International Journal of Production Economics, Elsevier, vol. 130(2), pages 268-276, April.
    19. Sahin, Özge & Czado, Claudia, 2022. "Vine copula mixture models and clustering for non-Gaussian data," Econometrics and Statistics, Elsevier, vol. 22(C), pages 136-158.
    20. Nema Dean & Rebecca Nugent, 2013. "Clustering student skill set profiles in a unit hypercube using mixtures of multivariate betas," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 339-357, September.
    21. Hivert, Benjamin & Agniel, Denis & Thiébaut, Rodolphe & Hejblum, Boris P., 2024. "Post-clustering difference testing: Valid inference and practical considerations with applications to ecological and biological data," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:10:p:1374-1387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.