IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v30y2015i4p1051-1077.html
   My bibliography  Save this article

Improving the vector $$\varepsilon $$ ε acceleration for the EM algorithm using a re-starting procedure

Author

Listed:
  • Masahiro Kuroda
  • Zhi Geng
  • Michio Sakakihara

Abstract

The expectation–maximization (EM) algorithm is a popular algorithm for finding maximum likelihood estimates from incomplete data. However, the EM algorithm converges slowly when the proportion of missing data is large. Although many acceleration algorithms have been proposed, they require complex calculations. Kuroda and Sakakihara (Comput Stat Data Anal 51:1549–1561, 2006 ) developed the $$\varepsilon $$ ε -accelerated EM algorithm which only uses the sequence of estimates obtained by the EM algorithm to get an accelerated sequence for the EM sequence but does not change the original EM sequence. We find that the accelerated sequence often has larger values of the likelihood than the current estimate obtained by the EM algorithm. Thus, in this paper, we try to re-start the EM iterations using the accelerated sequence and then generate a new EM sequence that increases its speed of convergence. This algorithm has another advantage of simple implementation since it only uses the EM iterations and re-starts the iterations by an estimate with a larger likelihood. The re-starting algorithm called the $$\varepsilon $$ ε R-accelerated EM algorithm can further improve the EM algorithm and the $$\varepsilon $$ ε -accelerated EM algorithm in the sense of that it can reduces the number of iterations and computation time. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Masahiro Kuroda & Zhi Geng & Michio Sakakihara, 2015. "Improving the vector $$\varepsilon $$ ε acceleration for the EM algorithm using a re-starting procedure," Computational Statistics, Springer, vol. 30(4), pages 1051-1077, December.
  • Handle: RePEc:spr:compst:v:30:y:2015:i:4:p:1051-1077
    DOI: 10.1007/s00180-015-0565-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-015-0565-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-015-0565-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mingfeng Wang & Masahiro Kuroda & Michio Sakakihara & Zhi Geng, 2008. "Acceleration of the EM algorithm using the vector epsilon algorithm," Computational Statistics, Springer, vol. 23(3), pages 469-486, July.
    2. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
    3. Lee, Gyemin & Scott, Clayton, 2012. "EM algorithms for multivariate Gaussian mixture models with truncated and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2816-2829.
    4. Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.
    5. Kuroda, Masahiro & Sakakihara, Michio, 2006. "Accelerating the convergence of the EM algorithm using the vector [epsilon] algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1549-1561, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berlinet, A.F. & Roland, Ch., 2012. "Acceleration of the EM algorithm: P-EM versus epsilon algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4122-4137.
    2. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    3. Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
    4. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    5. Paolo Berta & Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini, 2016. "Multilevel cluster-weighted models for the evaluation of hospitals," METRON, Springer;Sapienza Università di Roma, vol. 74(3), pages 275-292, December.
    6. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    7. repec:jss:jstsof:28:i04 is not listed on IDEAS
    8. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    9. Papastamoulis, Panagiotis & Martin-Magniette, Marie-Laure & Maugis-Rabusseau, Cathy, 2016. "On the estimation of mixtures of Poisson regression models with large number of components," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 97-106.
    10. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    11. Kerekes, Monika, 2012. "Growth miracles and failures in a Markov switching classification model of growth," Journal of Development Economics, Elsevier, vol. 98(2), pages 167-177.
    12. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    13. Kerekes, Monika, 2009. "Growth miracles and failures in a Markov switching classification model of growth," Discussion Papers 2009/11, Free University Berlin, School of Business & Economics.
    14. Andrews, Jeffrey L., 2018. "Addressing overfitting and underfitting in Gaussian model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 160-171.
    15. Tian, Guo-Liang & Tang, Man-Lai & Liu, Chunling, 2012. "Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 255-265.
    16. Mai, Feng & Fry, Michael J. & Ohlmann, Jeffrey W., 2018. "Model-based capacitated clustering with posterior regularization," European Journal of Operational Research, Elsevier, vol. 271(2), pages 594-605.
    17. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    18. Kuroda, Masahiro & Mori, Yuichi & Iizuka, Masaya & Sakakihara, Michio, 2011. "Acceleration of the alternating least squares algorithm for principal components analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 143-153, January.
    19. Gabriele Perrone & Gabriele Soffritti, 2023. "Seemingly unrelated clusterwise linear regression for contaminated data," Statistical Papers, Springer, vol. 64(3), pages 883-921, June.
    20. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
    21. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:30:y:2015:i:4:p:1051-1077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.