IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v125y2018icp136-155.html
   My bibliography  Save this article

Supervised dimension reduction for ordinal predictors

Author

Listed:
  • Forzani, Liliana
  • García Arancibia, Rodrigo
  • Llop, Pamela
  • Tomassi, Diego

Abstract

In applications involving ordinal predictors, common approaches to reduce dimensionality are either extensions of unsupervised techniques such as principal component analysis, or variable selection procedures that rely on modeling the regression function. A supervised dimension reduction method tailored to ordered categorical predictors is introduced which uses a model-based dimension reduction approach, inspired by extending sufficient dimension reductions to the context of latent Gaussian variables. The reduction is chosen without modeling the response as a function of the predictors and does not impose any distributional assumption on the response or on the response given the predictors. A likelihood-based estimator of the reduction is derived and an iterative expectation–maximization type algorithm is proposed to alleviate the computational load and thus make the method more practical. A regularized estimator, which simultaneously achieves variable selection and dimension reduction, is also presented. Performance of the proposed method is evaluated through simulations and a real data example for socioeconomic index construction, comparing favorably to widespread use techniques.

Suggested Citation

  • Forzani, Liliana & García Arancibia, Rodrigo & Llop, Pamela & Tomassi, Diego, 2018. "Supervised dimension reduction for ordinal predictors," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 136-155.
  • Handle: RePEc:eee:csdana:v:125:y:2018:i:c:p:136-155
    DOI: 10.1016/j.csda.2018.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731830080X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Efstathia Bura & Sabrina Duarte & Liliana Forzani, 2016. "Sufficient Reductions in Regressions With Exponential Family Inverse Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1313-1329, July.
    2. Mazzonna, Fabrizio, 2014. "The long-lasting effects of family background: A European cross-country comparison," Economics of Education Review, Elsevier, vol. 40(C), pages 25-42.
    3. Zhu, Yu & Zeng, Peng, 2006. "Fourier Methods for Estimating the Central Subspace and the Central Mean Subspace in Regression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1638-1651, December.
    4. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    5. Lee, Gyemin & Scott, Clayton, 2012. "EM algorithms for multivariate Gaussian mixture models with truncated and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2816-2829.
    6. Efstathia Bura & R. Dennis Cook, 2001. "Estimating the structural dimension of regressions via parametric inverse regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 393-410.
    7. Roberts, W.J.J., 2014. "Factor analysis parameter estimation from incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 61-66.
    8. Francesca Chiaromonte & R. Cook, 2002. "Sufficient Dimension Reduction and Graphics in Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 768-795, December.
    9. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    10. Kamakura, Wagner A. & Mazzon, Jose A., 2013. "Socioeconomic status and consumption in an emerging economy," International Journal of Research in Marketing, Elsevier, vol. 30(1), pages 4-18.
    11. Greene,William H. & Hensher,David A., 2010. "Modeling Ordered Choices," Cambridge Books, Cambridge University Press, number 9780521194204.
    12. Cook, R. Dennis & Forzani, Liliana, 2009. "Likelihood-Based Sufficient Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 197-208.
    13. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    14. Stanislav Kolenikov & Gustavo Angeles, 2009. "Socioeconomic Status Measurement With Discrete Proxy Variables: Is Principal Component Analysis A Reliable Answer?," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(1), pages 128-165, March.
    15. Murasko, Jason E., 2009. "Socioeconomic status, height, and obesity in children," Economics & Human Biology, Elsevier, vol. 7(3), pages 376-386, December.
    16. Cook, R. Dennis & Ni, Liqiang, 2005. "Sufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 410-428, June.
    17. Feeny, Simon & McDonald, Lachlan & Posso, Alberto, 2014. "Are Poor People Less Happy? Findings from Melanesia," World Development, Elsevier, vol. 64(C), pages 448-459.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabrina Duarte & Liliana Forzani & Pamela Llop & Rodrigo García Arancibia & Diego Tomassi, 2023. "Socioeconomic Index for Income and Poverty Prediction: A Sufficient Dimension Reduction Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(2), pages 318-346, June.
    2. Stefanía D’Iorio & Liliana Forzani & Rodrigo García Arancibia & Ignacio Girela, 2024. "Predictive power of composite socioeconomic indices for targeted programs: principal components and partial least squares," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(4), pages 3497-3534, August.
    3. Li, Junlan & Wang, Tao, 2021. "Dimension reduction in binary response regression: A joint modeling approach," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    4. Stefanía D’Iorio & Liliana Forzani & Rodrigo García Arancibia & Ignacio Girela, 2023. "Predictive Power of Composite Socioeconomic Indices in Regression and Classification: Principal Components and Partial Least Squares," Working Papers 246, Red Nacional de Investigadores en Economía (RedNIE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabrina Duarte & Liliana Forzani & Pamela Llop & Rodrigo García Arancibia & Diego Tomassi, 2023. "Socioeconomic Index for Income and Poverty Prediction: A Sufficient Dimension Reduction Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(2), pages 318-346, June.
    2. Forzani, Liliana & Rodriguez, Daniela & Smucler, Ezequiel & Sued, Mariela, 2019. "Sufficient dimension reduction and prediction in regression: Asymptotic results," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 339-349.
    3. repec:jss:jstsof:39:i03 is not listed on IDEAS
    4. Wu, Runxiong & Chen, Xin, 2021. "MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    5. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    6. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    7. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    8. Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
    9. Kapla, Daniel & Fertl, Lukas & Bura, Efstathia, 2022. "Fusing sufficient dimension reduction with neural networks," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    10. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    11. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    12. Li, Junlan & Wang, Tao, 2021. "Dimension reduction in binary response regression: A joint modeling approach," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    13. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    14. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    15. Li‐Ping Zhu & Li‐Xing Zhu, 2009. "On distribution‐weighted partial least squares with diverging number of highly correlated predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 525-548, April.
    16. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    17. Tao, Chenyang & Feng, Jianfeng, 2017. "Canonical kernel dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 131-148.
    18. Luo, Wei & Cai, Xizhen, 2016. "A new estimator for efficient dimension reduction in regression," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 236-249.
    19. Andrea Bergesio & María Eugenia Szretter Noste & Víctor J. Yohai, 2021. "A robust proposal of estimation for the sufficient dimension reduction problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 758-783, September.
    20. Eliana Christou, 2020. "Robust dimension reduction using sliced inverse median regression," Statistical Papers, Springer, vol. 61(5), pages 1799-1818, October.
    21. Heng-Hui Lue & Bing-Ran You, 2013. "High-dimensional regression analysis with treatment comparisons," Computational Statistics, Springer, vol. 28(3), pages 1299-1317, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:125:y:2018:i:c:p:136-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.