IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i8p2781-2785.html
   My bibliography  Save this article

Spatial statistics: Methods, models & computation

Author

Listed:
  • LeSage, James
  • Banerjee, Sudipto
  • Fischer, Manfred M.
  • Congdon, Peter

Abstract

No abstract is available for this item.

Suggested Citation

  • LeSage, James & Banerjee, Sudipto & Fischer, Manfred M. & Congdon, Peter, 2009. "Spatial statistics: Methods, models & computation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2781-2785, June.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:2781-2785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00544-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haining, Robert & Law, Jane & Griffith, Daniel, 2009. "Modelling small area counts in the presence of overdispersion and spatial autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2923-2937, June.
    2. Kang, Emily L. & Liu, Desheng & Cressie, Noel, 2009. "Statistical analysis of small-area data based on independence, spatial, non-hierarchical, and hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3016-3032, June.
    3. Bonneu, Florent & Thomas-Agnan, Christine, 2009. "Spatial point process models for location-allocation problems," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3070-3081, June.
    4. Bolin, David & Lindström, Johan & Eklundh, Lars & Lindgren, Finn, 2009. "Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2885-2896, June.
    5. Bivand, Roger & Müller, Werner G. & Reder, Markus, 2009. "Power calculations for global and local Moran's," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2859-2872, June.
    6. White, Gentry & Ghosh, Sujit K., 2009. "A stochastic neighborhood conditional autoregressive model for spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3033-3046, June.
    7. Cucala, Lionel, 2009. "A flexible spatial scan test for case event data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2843-2850, June.
    8. Ugarte, M.D. & Goicoa, T. & Militino, A.F., 2009. "Empirical Bayes and Fully Bayes procedures to detect high-risk areas in disease mapping," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2938-2949, June.
    9. Smirnov, Oleg A. & Anselin, Luc E., 2009. "An O(N) parallel method of computing the Log-Jacobian of the variable transformation for models with spatial interaction on a lattice," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2980-2988, June.
    10. Finley, Andrew O. & Sang, Huiyan & Banerjee, Sudipto & Gelfand, Alan E., 2009. "Improving the performance of predictive process modeling for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2873-2884, June.
    11. Lee, Dae-Jin & Durbán, María, 2009. "Smooth-CAR mixed models for spatial count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2968-2979, June.
    12. Wu, Liu-Cang & Li, Hui-Qiong, 2009. "Summary statistics for measuring the relationship among three types of points in multivariate point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2809-2816, June.
    13. Congdon, Peter, 2009. "Modelling the impact of socioeconomic structure on spatial health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3047-3056, June.
    14. Wall, Melanie M. & Liu, Xuan, 2009. "Spatial latent class analysis model for spatially distributed multivariate binary data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3057-3069, June.
    15. Zhang, Tonglin & Lin, Ge, 2009. "Spatial scan statistics in loglinear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2851-2858, June.
    16. Choi, Jungsoon & Fuentes, Montserrat & Reich, Brian J., 2009. "Spatial-temporal association between fine particulate matter and daily mortality," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2989-3000, June.
    17. Baltagi, Badi H. & Song, Seuck Heun & Kwon, Jae Hyeok, 2009. "Testing for heteroskedasticity and spatial correlation in a random effects panel data model," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2897-2922, June.
    18. Wu, Jincao & Patwa, Tasneem H. & Lubman, David M. & Ghosh, Debashis, 2009. "Identification of differentially expressed spatial clusters using humoral response microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3094-3102, June.
    19. MacNab, Ying C. & Lin, Yi, 2009. "On empirical Bayes penalized quasi-likelihood inference in GLMMs and in Bayesian disease mapping and ecological modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2950-2967, June.
    20. Ceyhan, Elvan, 2009. "Overall and pairwise segregation tests based on nearest neighbor contingency tables," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2786-2808, June.
    21. Bel, L. & Allard, D. & Laurent, J.M. & Cheddadi, R. & Bar-Hen, A., 2009. "CART algorithm for spatial data: Application to environmental and ecological data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3082-3093, June.
    22. Hossain, Md. Monir & Lawson, Andrew B., 2009. "Approximate methods in Bayesian point process spatial models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2831-2842, June.
    23. Assuno, Renato & Correa, Thais, 2009. "Surveillance to detect emerging space-time clusters," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2817-2830, June.
    24. Demattei[diaeresis], Christophe & Molinari, Nicolas & Daures, Jean-Pierre, 2007. "Arbitrarily shaped multiple spatial cluster detection for case event data," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3931-3945, May.
    25. Hatfield, Laura A. & Hoffbeck, Richard W. & Alexander, Bruce H. & Carlin, Bradley P., 2009. "Spatiotemporal and spatial threshold models for relating UV exposures and skin cancer in the central United States," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3001-3015, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    2. Fernández-Alcalá, R.M. & Navarro-Moreno, J. & Ruiz-Molina, J.C., 2009. "Statistical inference for doubly stochastic multichannel Poisson processes: A PCA approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4322-4331, October.
    3. Yao Zhang & Taoyuan Wei & Wentao Tian & Kai Zhao, 2022. "Spatiotemporal Differentiation and Driving Mechanism of Coupling Coordination between New-Type Urbanization and Ecological Environment in China," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    4. Riedel, Nadine & Simmler, Martin & Wittrock, Christian, 2020. "Local fiscal policies and their impact on the number and spatial distribution of new firms," Regional Science and Urban Economics, Elsevier, vol. 83(C).
    5. Zeynep Elburz & Karima Kourtit & Peter Nijkamp, 2022. "Well-Being and Geography: Modelling Differences in Regional Well-Being Profiles in Case of Spatial Dependence—Evidence from Turkey," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    6. Croux, Christophe & Gelper, Sarah & Mahieu, Koen, 2010. "Robust exponential smoothing of multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2999-3006, December.
    7. Hua Guo & Fan Gu & Yanling Peng & Xin Deng & Lili Guo, 2022. "Does Digital Inclusive Finance Effectively Promote Agricultural Green Development?—A Case Study of China," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    8. Junjie Cao & Yao Zhang & Taoyuan Wei & Hui Sun, 2021. "Temporal–Spatial Evolution and Influencing Factors of Coordinated Development of the Population, Resources, Economy and Environment (PREE) System: Evidence from 31 Provinces in China," IJERPH, MDPI, vol. 18(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    2. Mohammadreza Mohebbi & Rory Wolfe & Andrew Forbes, 2014. "Disease Mapping and Regression with Count Data in the Presence of Overdispersion and Spatial Autocorrelation: A Bayesian Model Averaging Approach," IJERPH, MDPI, vol. 11(1), pages 1-20, January.
    3. Wan, You & Pei, Tao & Zhou, Chenghu & Jiang, Yong & Qu, Chenxu & Qiao, Youlin, 2012. "ACOMCD: A multiple cluster detection algorithm based on the spatial scan statistic and ant colony optimization," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 283-296.
    4. Esmail Yarali & Firoozeh Rivaz, 2020. "Incorporating covariate information in the covariance structure of misaligned spatial data," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    5. Meghamrita Chakraborty, 2023. "Linking Migration, Diversity and Regional Development in India," Journal of Development Policy and Practice, , vol. 8(1), pages 55-72, January.
    6. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    7. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    9. Qing Luo & Daniel A. Griffith & Huayi Wu, 2019. "Spatial autocorrelation for massive spatial data: verification of efficiency and statistical power asymptotics," Journal of Geographical Systems, Springer, vol. 21(2), pages 237-269, June.
    10. Miguel Boubeta & María José Lombardía & Domingo Morales, 2016. "Empirical best prediction under area-level Poisson mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 548-569, September.
    11. Aboukhamseen, S.M. & Soltani, A.R. & Najafi, M., 2016. "Modelling cluster detection in spatial scan statistics: Formation of a spatial Poisson scanning window and an ADHD case study," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 26-31.
    12. Jack C. Yue & Ming-Huei Tu & Yin-Yee Leong, 2024. "A spatial analysis of the health and longevity of Taiwanese people," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 384-399, April.
    13. Mousaei Sanjerehei, Mohammad, 2011. "Determination of an appropriate quadrat size and shape for detecting association between plant species," Ecological Modelling, Elsevier, vol. 222(10), pages 1790-1792.
    14. Herrera Gómez, Marcos & Cid, Juan Carlos & Paz, Jorge Augusto, 2012. "Introducción a la econometría espacial: Una aplicación al estudio de la fecundidad en la Argentina usando R [Introduction to Spatial Econometrics: An application to the study of fertility in Argent," MPRA Paper 41138, University Library of Munich, Germany.
    15. Zhenzhen Zhang & Thomas M. Braun & Karen E. Peterson & Howard Hu & Martha M. Téllez-Rojo & Brisa N. Sánchez, 2018. "Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 634-650, December.
    16. Yanguang Chen, 2013. "New Approaches for Calculating Moran’s Index of Spatial Autocorrelation," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-14, July.
    17. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    18. Kouassi, Eugene & Mougoué, Mbodja & Sango, Joel & Bosson Brou, J.M. & Amba, Claude M.O. & Salisu, Afeez Adebare, 2014. "Testing for heteroskedasticity and spatial correlation in a two way random effects model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 153-171.
    19. Arif Wismadi & Mark Zuidgeest & Mark Brussel & Martin Maarseveen, 2014. "Spatial Preference Modelling for equitable infrastructure provision: an application of Sen’s Capability Approach," Journal of Geographical Systems, Springer, vol. 16(1), pages 19-48, January.
    20. Margherita Silan & Pietro Belloni & Giovanna Boccuzzo, 2023. "Identification of neighborhood clusters on data balanced by a poset-based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1295-1316, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:2781-2785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.