IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i8p2980-2988.html
   My bibliography  Save this article

An O(N) parallel method of computing the Log-Jacobian of the variable transformation for models with spatial interaction on a lattice

Author

Listed:
  • Smirnov, Oleg A.
  • Anselin, Luc E.

Abstract

A parallel method for computing the log of the Jacobian of variable transformations in models of spatial interactions on a lattice is developed. The method is shown to be easy to implement in parallel and distributed computing environments. The advantages of parallel computations are significant even in computer systems with low numbers of processing units, making it computationally efficient in a variety of settings. The non-iterative method is feasible for any sparse spatial weights matrix since the computations involved impose modest memory requirements for storing intermediate results. The method has a linear computational complexity for datasets with a finite Hausdorff dimension. It is shown that most geo-spatial data satisfy this requirement. Asymptotic properties of the method are illustrated using simulated data, and the method is deployed for obtaining maximum likelihood estimates for the spatial autoregressive model using data for the US economy.

Suggested Citation

  • Smirnov, Oleg A. & Anselin, Luc E., 2009. "An O(N) parallel method of computing the Log-Jacobian of the variable transformation for models with spatial interaction on a lattice," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2980-2988, June.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:2980-2988
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00485-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Steinsland, Ingelin, 2007. "Parallel exact sampling and evaluation of Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2969-2981, March.
    3. Pakes, Ariel & Ericson, Richard, 1998. "Empirical Implications of Alternative Models of Firm Dynamics," Journal of Economic Theory, Elsevier, vol. 79(1), pages 1-45, March.
    4. Gatu, Cristian & Yanev, Petko I. & Kontoghiorghes, Erricos J., 2007. "A graph approach to generate all possible regression submodels," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 799-815, October.
    5. Zhang, Yongsheng & Zhao, Xueyan, 2004. "Testing the scale effect predicted by the Fujita-Krugman urbanization model," Journal of Economic Behavior & Organization, Elsevier, vol. 55(2), pages 207-222, October.
    6. Robert E. Lucas Jr., 1978. "On the Size Distribution of Business Firms," Bell Journal of Economics, The RAND Corporation, vol. 9(2), pages 508-523, Autumn.
    7. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    8. Lee, Lung-fei, 2007. "The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 140(1), pages 155-189, September.
    9. LeSage, James P. & Kelley Pace, R., 2007. "A matrix exponential spatial specification," Journal of Econometrics, Elsevier, vol. 140(1), pages 190-214, September.
    10. Smirnov, Oleg & Anselin, Luc, 2001. "Fast maximum likelihood estimation of very large spatial autoregressive models: a characteristic polynomial approach," Computational Statistics & Data Analysis, Elsevier, vol. 35(3), pages 301-319, January.
    11. Oh, Man-Suk & Shin, Dong Wan & Kim, Han Joon, 2002. "Bayesian analysis of regression models with spatially correlated errors and missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 387-400, June.
    12. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukas Dargel, 2021. "Revisiting estimation methods for spatial econometric interaction models," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-41, December.
    2. Smirnov, Oleg A. & Egan, Kevin J., 2012. "Spatial random utility model with an application to recreation demand," Economic Modelling, Elsevier, vol. 29(1), pages 72-78.
    3. Nikolas Kuschnig, 2022. "Bayesian spatial econometrics: a software architecture," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-25, December.
    4. LeSage, James & Banerjee, Sudipto & Fischer, Manfred M. & Congdon, Peter, 2009. "Spatial statistics: Methods, models & computation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2781-2785, June.
    5. Nikolas Kuschnig, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Papers wuwp318, Vienna University of Economics and Business, Department of Economics.
    6. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    7. Dargel, Lukas, 2021. "Revisiting Estimation Methods for Spatial Econometric Interaction Models," TSE Working Papers 21-1192, Toulouse School of Economics (TSE).
    8. Jin, Fei & Lee, Lung-fei, 2012. "Approximated likelihood and root estimators for spatial interaction in spatial autoregressive models," Regional Science and Urban Economics, Elsevier, vol. 42(3), pages 446-458.
    9. repec:asg:wpaper:1013 is not listed on IDEAS
    10. Smirnov, Oleg A., 2010. "Modeling spatial discrete choice," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 292-298, September.
    11. repec:asg:wpaper:1047 is not listed on IDEAS
    12. Luc Anselin, 2012. "From SpaceStat to CyberGIS," International Regional Science Review, , vol. 35(2), pages 131-157, April.
    13. Jin, Fei & Lee, Lung-fei, 2013. "Cox-type tests for competing spatial autoregressive models with spatial autoregressive disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 590-616.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:asg:wpaper:1013 is not listed on IDEAS
    2. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    3. Huang, Danyang & Wang, Feifei & Zhu, Xuening & Wang, Hansheng, 2020. "Two-mode network autoregressive model for large-scale networks," Journal of Econometrics, Elsevier, vol. 216(1), pages 203-219.
    4. Zhang Yuanqing, 2014. "Estimation of Partially Specified Spatial Autoregressive Model," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 226-235, June.
    5. Li, Mengyuan & Yu, Dalei & Bai, Peng, 2013. "A note on the existence and uniqueness of quasi-maximum likelihood estimators for mixed regressive, spatial autoregression models," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 568-572.
    6. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.
    7. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    8. Zhenlin Yang & Liangjun Su, 2007. "Instrumental Variable Quantile Estimation of Spatial Autoregressive Models," Working Papers 05-2007, Singapore Management University, School of Economics.
    9. Jin, Fei & Lee, Lung-fei, 2012. "Approximated likelihood and root estimators for spatial interaction in spatial autoregressive models," Regional Science and Urban Economics, Elsevier, vol. 42(3), pages 446-458.
    10. Yueqin Wu & Yan Sun, 2017. "Shrinkage estimation of the linear model with spatial interaction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 51-68, January.
    11. Fernando A. López & Román Mínguez & Jesús Mur, 2020. "ML versus IV estimates of spatial SUR models: evidence from the case of Airbnb in Madrid urban area," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(2), pages 313-347, April.
    12. Liu, Xiaodong & Lee, Lung-fei & Bollinger, Christopher R., 2010. "An efficient GMM estimator of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 159(2), pages 303-319, December.
    13. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.
    14. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    15. Debarsy, Nicolas & Jin, Fei & Lee, Lung-fei, 2015. "Large sample properties of the matrix exponential spatial specification with an application to FDI," Journal of Econometrics, Elsevier, vol. 188(1), pages 1-21.
    16. Zhengyu Zhang, 2013. "A Pairwise Difference Estimator for Partially Linear Spatial Autoregressive Models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(2), pages 176-194, June.
    17. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    18. Guo Shuang & Wei Chuanhua, 2015. "Testing for Spatial Lag Effects in Varying Coefficient Spatial Autoregressive Models," Journal of Systems Science and Information, De Gruyter, vol. 3(6), pages 561-567, December.
    19. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    20. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2018. "Generalized spatial autocorrelation in a panel-probit model with an application to exporting in China," Empirical Economics, Springer, vol. 55(1), pages 193-211, August.
    21. repec:asg:wpaper:1045 is not listed on IDEAS
    22. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:2980-2988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.